Tractability

15-110 — Wednesday 10/22

Quizlets

* Identify brute force algorithms to common problems that run in O(n!) or
0O(2"), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

* Define the complexity classes P and NP and explain why these classes are
important

* Identify whether an algorithm is tractable or intractable, and whether it is
in P, NP, or neither complexity class

* Use heuristics to find good-enough solutions to NP problems in polynomial
time

As we wrap up the unit on data structures and efficiency, we still need
to answer a big question: can all algorithms be made efficient? And,
importantly, what does it mean to be efficient?

To answer these questions, we'll consider a collection of important
computational problems. While considering these problems, ask
yourself: how efficient are these solutions? Could we make them
better?

Computationally Difficult
Problems

First, consider the Travelling
Salesperson problem.

The program is given a graph that
represents a map — nodes are cities,
edges are distances between cities.

The goal is to find the shortest possible
Loute that visits every city, then returns
ome.

Practical application: plan a route for a
postal worker.

Intuitive algorithm: try every possible
route from the starting city across all the
others, then choose the shortest route of
them all.

Philadelphia

‘l||HHHHHHH|HII"
Washington DC

For example, starting from Pittsburgh in

the graph to the right we have three

possible first-stops. Each of those has two 223
second-stop options, leading to six total
possibilities.

When we compare the routes, the shortest
route is PIT->DC->BALT->PHIL->PIT (or its
reverse, PIT->PHIL->BALT->DC->PIT).

This type of solution approach is called a brute force algorithm. Brute

force algorithms are simple: you just generate every possible solution

and check each of the generated solutions to see if any of them work
based on the problem's constraints.

Brute force algorithms are easy to understand, implement, and test.
They also apply to a wide range of problems, which makes them useful.

However, brute force algorithms have one major drawback: their
efficiency.

Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2)
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them,
but the intuitive algorithm takes a long time. Let's go through some examples.

Say we want to solve a basic puzzle by
putting together square pieces (like the
ones shown to the right) so that any
two pieces that are touching each other
make a figure with a head and feet of
the same color.

To make this even simpler, let's make a
rule that pieces cannot be rotated and
the final result must be a m x m square.

Here's our question: given a set of
pieces, is it possible to make a solution
that follows these rules?

e g o *O*
o1 B 4 4 W7 d
) 1 Y r-
/L:{L JT
o2 F > s
Y

o
B o R

=5

A &

F o A o d

| S 1

A
L oo
| 1

We can again use brute force to
solve the puzzle problem, just like
we did with Travelling
Salesperson. We can do this by
trying all possible pieces for each
location.

In the example to the right there

are 9 options for the first position,

8 for the second, 7 for the third,
etc.... it's O(n!) time again.

9 choices

8 choices

7 choices

6 choices

5 choices

4 choices

™ A
o1 B 4 W7 d

Y T
Q 5T oT
R 2 dl |k 5 8 A
Y ;q,joﬁr
o g JT
e o

3 choices

2 choices

1 choice

It turns out that O(n!) is a really bad runtime. For example, let's assume that
it takes 1 millisecond (1/1000%" of a second) to set up a specific ordering of
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.

In the problem Subset Sum we are given a list Subsets of [2, 3]: Subsets of [1, 2, 3]:
of numbers and a target number, x. We want

to determine if there's a subset of the list that -

sums to x. e [1]

Brute force algorithm: generate all possible . * [2]

subsets, see if any of them sum to x. [] . [1,2]
* [2]

How do we generate all subsets? Use _ " 3] * [3]

recursion! If we have all four subsets of the list * [2, 3] . [1,3]

[2, 3] we can use them to create all 8 subsets ’

of [1, 2, 3]. For each subset, make one version

that includes 1 and one version that doesn't. . [2,3]

* [1,2,3]

We double the number of subsets with each
new number that is added- this is O(2").

A similar problem commonly encountered Inputs for 2 elements Inputs for 3 elements
in computer science, called Boolean

Satisfiability, asks: for a given circuit with n

inputs (X, to X,), is there a set of 0,0,0
assignments ot X;to 0 or 1 that makes the « 0,0,1
whole circuit output 17

.« 0,0 * 0,1,0
« 0,1 ¢ 01,1

Instead of generating all possible subsets, . 1,0

we generate all possible combinations of .

\ . . - 1,1 1,0,0

input values (like generating a truth table!). Clo1
, _ « 1,1,0

This also doubles everY time we add a new C 111

input as we must try all possible r

combinations with the input set to 0, then
set to 1. It's still O(2").

Here's one final example: scheduling final exams.

Given a list of classes, a dictionary mapping S
Semester & Mini-2 Final Exams: December 9, 10, 12, 13, 15 & 16(Make-Up Day)

students to their classes, and a list of timeslots over — e —

Architecture
the per|0d Of a WGEk, generate a SChed UIe that fits 48116 A BUILDING PHYSICS Sunday, December 15, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)
. 48315 1 ENVIR I: CLIM & ENG Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)
W|th|n the penod and results IN NO Student hav|ng 48432 A ENVI Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)
. 48531 A FABRICATNG CUSTOMZTMN Monday, December 9, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)
t th I t 48558 A RLTCOMP Thursday, December 12, 2019 0830 am - 1130 am To Be Announced (TBA)
WO eXa m S I n e Sa m e S O * 48568 A ADV CAD BIM 3D VISLZ Tuesday, December 10, 2019 08:30 am - 11:30 am To Be Announced ETBA,\
48635 1 ENVIRO | M ARCH Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)
48655 A ENV Il GRAD Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)
45714 A DATA AML URBN DSNG Friday, December 13, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)
We Ca n e n e ra e a | I OSSi b I e SC h e d u I eS u Si n a 48729 A PROD HLTH QUAL BLDGS Thursday, December 12, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)
g t p g 45734 A RCTV SP MD ARC Friday, December 13, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)
- . - 48743 A INTRO ECO DES Friday, December 13, 2019 01:00 pm - 04:00 pm To Be Announced ETBA,\
S | m | I a r a p p roa Ch to S u bset S u m . Th e n We J u St n eed 48749 A CD SPECIAL TOPICS Tuesday, December 10, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)
. 48785 A MAAD RES PROJ Sunday, Decernber 15, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)
to Iook for onhe Sched ule that has no co nfl |Cts by 48798 A HVAC & PS LOW CARB B Monday, December 9, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)
. .
Art
C h e C kl n g eve ry St u d e nt ° H OWeVe r’ eve ry tl m e We 60157 A DRAWING NON-MAJORS Tuesday, December 10, 2019 05:30 pm - 08:30 pm CFA TBD

H H 60218 A REAL-TIME ANIMATION Monday, December 9, 2019 08:30 am - 11:30 am To Be Announced (TBA)
a d d a n eW C I a SS We n e ed to try a d d I n g It to eve ry 60220 A TECH CHARACTER ANIM Thursday, December 12, 2019 05:30 pm - 08:30 pm To Be Announced ETBA}
: . M M 60220 B TECH CHARACTER ANIM Thursday, December 12, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)

possible schedule in every possible timeslot. f n Comcmmsne S oo oo

If we say there are k timeslots (where k is some
constant number) and n classes, we turn one
schedule into k different schedules for every new
class added. This is O(k")!

15

O(2") is a bit better than O(n!), but not that much better. Let's say we want
to solve the subset sum problem and it again takes us 1 millisecond to
generate a specific subset and see if it is equal to the target.

If n =10, we find the solution in 1.024 seconds. Much better!
But if n = 20, we find the solution in 17.48 minutes...
And if n =30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2") is not as bad as O(n!), but it's still really bad.

This leads us to a new concept: tractability. A
problem is said to be tractable if it has a
reasonably efficient runtime so that we can use
it for practical input sizes.

We say that a runtime is reasonable if it can be
expressed as a polynomial equation. This
means an equation of the form:

XK+ X+ L+ X+
where x is a variable and c, & k are constants.

0O(1), O(log n), O(nz, O(n2), and O(nk) are all
tractable. O(2"), O(k"), and O(n!) are not-
they're intractable.

We can see the difference in growth quickly
using the graph to the right.

Runtimes of Function Fafnili

Runtime

intractable tractable

w3 ! U{'.!"' EJ(r|'.'_].|—H'::|'.".] (n)

20000
15000

10000

"1V x

12 3 4 &5 6 F 8 &8 10 11 12 13 14 15 16 17 18 19 20

input size

Caveat: logarithms are tractable even though they
aren't polynomial, because they're faster than O(n).

If you consider how a brute-force solution generates solutions, and
how that algorithm would be affected by increasing the input size, you
can often determine whether the solution will be tractable or
intractable without digging deeply into the exact runtime.

You do:

* solve a nxn Sudoku puzzle by trying every possible combination of
numbers. Is that tractable or intractable?

* check every pair of elements in a n-element list to see if there are any
duplicates. Is that tractable or intractable?

Complexity Classes

Now we know just how bad the brute-force solutions to this set of
problems are when it comes to efficiency. Maybe we can design a
different algorithm that doesn't require us to generate every possible

dnNSwelr.

That will be our goal for the rest of the lecture: to see if we can find a
tractable solution to these hard problems.

Discuss: when we talked about the brute-force solutions to the
previous problems, did you think of a way to solve the problems a lot
faster?

You might have come up with ways to shave some time off the
algorithms, but most likely your new solutions are still intractable.
Coming up with fast solutions to these problems is hard!

Until now, we've only discussed how long it takes to find the solution to
a problem. Let's take a different approach.

Suppose a magical black box descends
from the sky onto campus one day.

Someone discovers that if you feed the
box a list of all the classes in a semester,
all the final exam timeslots, and every
student's schedule, the box will spit out
a final exam schedule for CMU.

If CMU has n classes, how long would it
take us to check if this schedule has
any conflicts in it?

\)

Semester & M nal Exams: December 9, 10, 12, 13, 15 & 16(Make-Up Day) i

Tourse,

Tection

TiHle

Date

Time (USA EST)

Tassroom(s)

Architecture
48116
48315
48432
48531
48558
48568
48635
48655
48714
48729
48734
48743
48749
48785
48798

Art
60157
60218
60220
60220
60333

Prr2r2rr2r2ra>r> 2>

> @ > >

BUILDING PHYSICS
ENVIR & CLIM & ENG
ENV Il

FABRICATNG CUSTOMZTN
RLT COMP

ADV CAD BIM 3D VISLZ
ENVIRO | MARCH

ENV 1| GRAD

DATA ANL URBN DSNG
PROD HLTH QUAL BLDGS
RCTV SP MD ARC

INTRO ECO DES

CD SPECIAL TOPICS
MAAD RES PROJ

HVAC & PS LOW CARB B

DRAWING NON-MAJORS
REAL-TIME ANIMATION
TECH CHARACTER ANIM
TECH CHARACTER ANIM
CHARACTER RIGGING

Sunday, December 15, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Monday, December 9, 2019
Thursday, December 12, 2019
Tuesday, December 10, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Friday, December 13, 2019
Thursday, December 12, 2019
Friday, December 13, 2019
Friday, December 13, 2019
Tuesday, Decernber 10, 2019
Sunday, December 15, 2019
Monday, December 9, 2019

Tuesday, Decermber 10, 2019
Monday, December 9, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Sunday, December 15, 2019

01:00 pm - 0400 pm
08:30 am - 11:30 am
0830 am - 11:30 am
01:00 pm - 0400 pm
0830 am - 11:30 am
0830 am - 11:30 am
08:30 am - 11:30 am
0830 am - 11:30 am
01:00 prn - 04:00 prn
01:00 prn - 04:00 prm
05:30 prn - 08:30 pm
01:00 prn - 0400 prn
01:00 prn - 04:00 prn
05:30 prm - 0830 prm
05:30 pm - 08:30 pm

05:30 prn - 08:30 prm
08:30 am - 11:30 am
05:30 pm - 08:30 pm
05:30 pm - 08:30 pm
08:30 am - 11:30 am

To 8e Announced (TBA)
To 8e Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To 8 Announced (TBA)

CFA TBD
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
BH 140F

For every student, we need to go through all pairs of their classes to see if
any of their classes are in the same timeslot. Each student is likely enrolled in
no more than 5 classes, so that's a constant number of checks — 10.

How many students are there? We can probably find a constant relation
between the number of classes in a semester and the number of students
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10
work. That's 60n, which is O(n). Verifying the solution is tractable!

Now that we've talked about both solving and verifying problems, we can
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems
that have similar efficiency. Specifically, we say that every algorithm in a
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only
includes algorithms which run in O(n) time or faster. This would also include
O(log n) and O(1).

First we define the complexity class P
to be the set of problems that we
know can be solved in polynomial
time. Recall that an algorithm is
polynomial if it can be expressed as:
c X<+ XK+ L +ex+

Our earlier examples (subset sum,
puzzle solving, exam scheduling)
don't fall into this category yet. But
plenty of other algorithms do- linear
search, summing a list, etc.

linear search

summing a list

Next we define the complexity class NP
to be the set of problems that can be
verified in polynomial time.

exam
This includes all problems in P- if you scheduling
can solve something in polynomial time,
you can check it as well. subset sum
It also includes most of the problems we Boolean .
discussed before! We already showed satisfiability puzzle solving

that we can check exam scheduling in
linear time. We can also check subset
sum, Boolean satisfiability, and puzzle
solving this way.

summing a list

linear search

Some problems are so difficult we can't

' ' ial ti Travelli
even verify them in polynomial time. raveliing

All problems
Salesperson

. . exam
Travelling Salesperson is an example of

this. If we're given a solution, we can't scheduling
verify that it's the best path- it's just

one possible path that exists. In general, ~ subsetsum
trying to find the 'best' solution takes a

long time to verify.

Less-Than-X
Travelling
Salesperson

Boolean

uzzle solvin
satisfiability P 5

We can turn Travelling Salesperson into
an NP problem by changing the prompt:
instead of finding the best path, just try
to find a path that is less than X total
distance for some number X. This is easy
to verify.

summing a list

linear search

P vs NP

Here's our big idea for the day.
Wouldn't it be nice if the set of
problems P was the same as the set
of problems NP?

If this was true, we could find an
algorithm that would put together
CMU's final exam schedule in a day
instead of waiting half a semester to
find out when exams will happen.
We'd be able to solve a lot of hard
problems really quickly, without
having to think hard about clever
new approaches!

exam
scheduling

subset sum

Boolean
satisfiability

linear search

All problems

Travelling
Salesperson

Less-Than-X
Travelling
Salesperson

puzzle solving

selection sort

Whether or not P = NP is a core question in the field of computer
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million
dollars, but no one has proved it yet...

https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems

Let's assume that P != NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that cannot
be solved in polynomial time. But how can we show that it's impossible

to come up with a clever new algorithm?

This is tricky!

Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that
are related to each other.

Consider subset sum and Boolean ,
LT Find bset of [4, 2, 7, 13] that to 8
satisfiability. We can transform subset ind a subset of | ' that sums to

sum into satisfiability. We just need to
make a circuit that uses each value in
the list as an input (0 if it isn't included,

1if it is) and make the circuit output 1 if Set the inputs so that the circuit outputs 1
the included values sum to the target. s

In fact, this mapping can be done in A=

polynomial time. This means that if we Circuit that checks

can find a tractable solution to Boolean = if sum = 8
satisfiability, we can also use it to make

a tractable solution to subset sum. B35

Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable
solution to one of them, we can make all problems in NP tractable. That will
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem,
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove
P = NP and will become rich and famous.

What happens if we prove P = NP?

We'll be able to solve a lot of hard
problems very quickly. NP problems
show up everywhere, so nearly
everything in the world will get
radically faster!

On the other hand, this might also
wreck how modern security and
encryption is implemented (as it will
get easier to break cryptography).

What happens if we prove P = NP?

Not much; we'll still be in our current
situation. But a lot of computer
scientists can turn their focus to
other problems.

Most Eeople think P = NP, but we
don't know how to prove it.

Heuristics

There are lots of useful problems that fall into the NP class. How can we
solve these problems practically when they're intractable?

Instead of trying to find the ideal solution to a problem, we can change our
standards to say we only need to find a good-enough solution. For example:

* In exam scheduling, maybe it's okay if there's a small number of conflicts
that affect < 1% of the student body

* |In subset sum, maybe it's okay if we find a subset that is almost equal to
the target, instead of exactly equal

When we're willing to compromise on optimality or accuracy, or put other
restrictions on the data, we can use heuristics to speed up the process a
great deal.

A heuristic is a search technique used by an algorithm to find a good-
enough solution to a problem. Heuristics may not find the best answer
to an NP problem, but they often achieve good results.

A heuristic can generate scores to rank potential next steps that the
algorithm can take at each decision point. By choosing the highest-

scored next step, the algorithm is more likely to find a working solution
quickly.

For the Travelling Salesperson problem,
we could generate a heuristic that ranks

next-possible paths based on their length.

The algorithm can always choose the next
city to visit by trying the shorter paths
first.

With this approach, we can generate a
pretty decent path in polynomial time.
This path might not be the best path, but
it's likely better than a random path.

Pittsburgh

Washington DC

Let's try applying a heuristic to subset sum.
Order all the values in the list from largest
to smallest. Always try addin% the largest
available value to the subset first.

We'll simplify the problem further by
assuming all values in the list are positive,
SO as soon as the subset is larger than the
tzi\rget, we can backtrack and try something
else.

We'll also sacrifice some optimality by
accepting any answer that comes within 2
of our desired target value.

How many subsets do we need to try to
determine if there's a subset of [13, 14, 7,
10, 7, 16, 2, 8, 3, 5] that sums to ~257?

Sort the list: [16, 14, 13, 10, 8,7, 7, 5, 3, 2]

[16] — too small

16, 14] — too big, backtrack!
16, 13] — still too big...

(16, 10] — this is 26, it works!

We missed the optimal solution —[16, 7, 2]
would have been perfect. But we found [16,
10] much faster.

Sidebar: Additional Watching

Want to learn more about these topics? Check out the following videos
recommended by prior students!

P vs. NP and the Computational Complexity Zoo:
https://www.youtube.com/watch?v=YX40hbAHx3s

P vs. NP - The Biggest Unsolved Problem in Computer Science:
https://www.youtube.com/watch?v=EHp4FPyajKQ

41

https://www.youtube.com/watch?v=YX40hbAHx3s
https://www.youtube.com/watch?v=EHp4FPyajKQ

* |dentify brute force approaches to common problems that run in O(n!) or
0O(2"), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

* Define the complexity classes P and NP and explain why these classes are
important

* |dentify whether an algorithm is tractable or intractable, and whether it is
in P, NP, or neither complexity class

* Use heuristics to find good-enough solutions to NP problems in polynomial
time

	Slide 1: Tractability
	Slide 2: Quizlet5
	Slide 3: Learning Goals
	Slide 4: Big Idea: What is Efficient?
	Slide 5: Computationally Difficult Problems
	Slide 6: Example: Travelling Salesperson Problem
	Slide 7: One Solution: Check All Paths
	Slide 8: Brute Force Algorithms
	Slide 9: Brute Force Efficiency
	Slide 10: Example: Puzzle Solving
	Slide 11: Brute Force on Puzzle Solving
	Slide 12: O(n!) is Really Bad
	Slide 13: Example: Subset Sum
	Slide 14: Example: Boolean Satisfiability
	Slide 15: Real-life Example: Exam Scheduling
	Slide 16: O(2n) and O(kn) are Still Really Slow
	Slide 17: Tractability
	Slide 18: Activity: Identify the Solution Runtime
	Slide 19: Complexity Classes
	Slide 20: Goal: Find Tractable Solutions
	Slide 21: Designing New Solutions is Hard!
	Slide 22: Magical Schedule-Making Box
	Slide 23: Verifying a Final Exam Schedule
	Slide 24: Complexity Classes
	Slide 25: Complexity Class P
	Slide 26: Complexity Class NP
	Slide 27: Not all Problems are in P or NP
	Slide 28: P vs NP
	Slide 29: Big Question: Does P = NP?
	Slide 30: Does P = NP? We Don't Know.
	Slide 31: Proving P != NP
	Slide 32: Proving P = NP
	Slide 33: Transforming Problems
	Slide 34: Useful NP Problems
	Slide 35: Possible Outcomes
	Slide 36: Heuristics
	Slide 37: Speeding Up Slow Algorithms
	Slide 38: Heuristics Provide Approximate Answers
	Slide 39: Heuristics Example: Travelling Salesperson
	Slide 40: Example: Applying a Heuristic
	Slide 41: Sidebar: Additional Watching
	Slide 42: Learning Goals

