
Search Algorithms II
15-110 – Monday 10/20



Announcements

• Welcome back from fall break!

• Check3/Hw3 Revision deadline: tomorrow at noon

• Final exam scheduled: Friday 12/12 1-4pm
• Do not schedule travel before this time!

• Remember to fill out the mid-semester surveys
• See announcement on Piazza

2



Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search tree 
(BST)

• Search for values in trees using linear search and in BSTs using binary 
search

• Analyze the efficiency of binary search on a balanced vs. unbalanced 
BSTs

• Recognize the requirements for building a good hash function and a 
good hashtable that lead to constant-time search

3



Binary Search Trees

4



Revisiting Search Algorithms

Recall the first lecture on Search Algorithms, when we discussed linear 
and binary search.

We've applied these algorithms to lists; can we apply them to other 
data structures too? Let's investigate how to search a tree.

5

7

3 8

6 92



Linear Search on a Tree

In linear search, we step through each element 
in a list until we either find the target item or 
run out of items to look at.

To visit all nodes in a tree, run the function 
recursively on both the left and right children. If 
we find the target in either subtree, we should 
return True.

We also have two base cases: one for when we 
reach an empty tree, and one for when we find 
the target. In both cases, we know what to 
return right away.

def search(t, target):

  if t == None:

    return False

  elif t["contents"] == target:

    return True

  else:

    leftSide = search(t["left"], target)

    rightSide = search(t["right"], target)

    return leftSide or rightSide

6



Binary Search on a Tree

If we want to search trees more efficiently, we'll need to apply 
constraints. For example, how could we apply Binary Search to a tree?

First, recall that for binary search to work the input list must be sorted. 
We'll also need to find a way to split the tree similarly to how we split 
the list in binary search (where we broke the list into two sides and only 
looked at one side).

Discuss: how could we "sort" and "split" a tree?

7



Binary Search Trees (BSTs) are "sorted"

We'll define a new kind of tree, a Binary 
Search Tree, as a binary tree that follows 
these constraints:

For every node n with value v:

• Its left child (and all its children, etc.) 
must have a value strictly less than v

• Its right child (and all its children, etc.) 
must have a value strictly greater than v

The left and right subtrees must also be 
BSTs. BST constraints are recursive.

8

7

3 8

6 92



4

71

6

9

8

3

Example: Is this a BST?

9

3

51

4

6

82



Binary Search Trees Can Use Binary Search

When we want to search for the value 5 in 
the tree to the left, we start at the root 
node, 7.

Because all nodes less than 7 must be in 
the left child tree and 5 is less than 7, we 
only need to search the left child tree.

Then, when we compare 5 to 3, we know 
that all values greater than 3 (but less than 
7) must be in the right child tree of 3. We 
only need to search the right child tree.

We 'split' the tree by only looking at one of 
the node's two children each time.

10

7

3 8

6 92

7

3

6



BST Search in Python

We would write binary search for a BST as follows:

def search(t, target):

    if t == None:

        return False

    elif t["contents"] == target:

        return True

    elif target < t["contents"]:

        return search(t["left"], target)

    else:

        return search(t["right"], target)

    

Note that we do just one recursive call, either on the left subtree or on the right subtree.

11



BST Search Runtime – Balanced Trees

Do we get the same O(log n) runtime for 
BST binary search that we did for list 
binary search? It depends on the tree.

A tree is balanced if for every node in 
the tree, the node's left and right 
subtrees are approximately the same 
size. This results in a tree that 
minimizes the number of recursive 
levels.

Every time you take a search step in a 
balanced tree, you cut the number of 
nodes to be searched in half. This 
means that the algorithm will indeed 
take O(log n) time.

12

6

3 8

5 92 7



BST Search Runtime – Unbalanced Trees

A tree is considered unbalanced if at least 
one node has significantly different sizes in 
its left and right children. For example, 
consider the tree on the right.

This is a valid BST, but it is still difficult to 
search! You must visit every single node to 
determine a number like 6 isn't in the tree. 
In the worst case, this can still take O(n) 
time.

When we put data into BSTs, we usually 
strive to make them balanced to avoid 
these edge cases. For efficiency purposes, 
assume that well-designed BSTs are 
balanced and the worst case is O(log n).

13

9

8

5

3

7



Benefits of BSTs

At first glance, BSTs may seem less useful than sorted 
lists. However, they have a few added perks!

BSTs make it much easier to add new data to a dataset. 
In a sorted list, you would need to slide a bunch of 
values over to make room for a new value; in a BST, you 
can just run a search for this new value. When you reach 
a leaf, add a node with the new value.

This is very helpful for systems like hospital priority 
queues, where patients frequently need to be moved 
around the queue based on changing circumstances.

14

3

51

4

6

82

7



Can We Do Even Better?

We've now shown that we can apply linear search and binary search in 
several circumstances. Binary search is faster than linear search, but can we 
do even better?

We can often increase the efficiency of an algorithm by thinking about the 
problem in a different way. Try using a different data structure or an entirely 
different algorithmic approach to solve the problem. Or try putting new 
constraints on the problem to speed the process up.

New goal: can we add more constraints to design the fastest possible search 
algorithm?

15



Optimizing Search: Constraints 

16



Search in Real Life – Post Boxes

Consider how you receive mail. Your mail is sent to the post boxes at the lower level of the 
UC. Do you have to check every box to find your mail?

No - you just check the box assigned to you.

This is possible because your mail has an address on the front that includes your mailbox 
number. Your mail will only be put into a box that has the same number as that address, 

not other random boxes. Picking up your mail is a O(1) operation!

Compare this to picking up a package. Everyone picks up packages at the same window, so 
you must wait in line. If there are n students, picking up a package is a O(n) operation.

17



Search in Programming – List Indexes

We can't search a list for an item that 
quickly, because we don't know where 
the item will be. But we can look up an 
item based on its index very quickly!

Python stores lists in memory as a series 
of adjacent parts. Each part holds a 
single value in the list, and all these parts 
use the same amount of space.

We can calculate exactly where an index 
is located in memory with a single 
equation; no repeated search is required.

18

lst

"a" "abc" True
8 bytes 8 bytes 8 bytes 8 bytes8  bytes 8 bytes



Combine the Concepts

To implement super-fast search, we want to combine the ideas of post 
boxes and list index lookup. We want to determine which index a value 
should be stored in based on the value itself.

If we can calculate the index based on the value, we can look for the 
value really quickly without needing to check other indexes.

19



Hash Functions Map Values to Integers

In order to determine which list index should be used based on the value 
itself, we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This function 
must follow two rules:

• The function should be deterministic. Given a specific value x, hash(x) 
must always return the same output i.

• The function should produce different outputs. Given two different values 
x and y, hash(x) and hash(y) should usually return two different 
outputs, i and j.

20



Built-in Hash Function

We don't need to write our own hash function most of the time- 
Python already has one!

x = "abc"

hash(x) # some giant number

hash works on integers, floats, Booleans, strings, and some other types 
as well.

21



Optimizing Search: Hashtables

22



Hashtables Organize Values

Now that we have a hash function, we can use 
it to organize values in a special data 
structure.

A hashtable is a structure with a fixed number 
of indexes. When we place a value in the 
structure, we put it into an index based on its 
hash value instead of placing it in the first 
open position of the structure.

We often call these indexes 'buckets'. For 
example, the hashtable to the right has four 
buckets.

Important: actual hashtables are huge and 
have far more buckets than this!

23

index 0 index 1 index 2 index 3



Adding Values to a 
Hashtable
For simplicity, let's say this hashtable uses a 
hash function that maps strings to indexes 
using the first letter of the string, as shown 
to the right.

First, add "book" to the table. 
hash("book") is 1, so we'll put the value 
in bucket 1.

Next, add "yay". hash("yay") is 24, 
which is outside the range of our table. 
How do we assign it?

Use value % tableSize to map integers 
larger than the size of the table to an index. 
24 % 4 = 0, so we put "yay" in bucket 0.

24

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
    return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"book""yay" "book"

Our example hash function is not good because 
it only looks at the first letter. A function that 
uses all the letters would be better. And our 
example hashtable is far too small!



Dealing with Collisions

When you add lots of values to a hashtable, 
two elements may collide. This happens if 
they are assigned to the same index. For 
example, if we try to add both "cmu" and 
"code" to our table, they will collide.

Hashtables are designed to handle 
collisions. One algorithm for handling 
collisions is to put the collided values in a 
list and put that list in the bucket. If your 
table size is reasonably big and the indexes 
returned by the hash function are 
reasonably spread out, each bucket will 
usually hold a small number of values.

25

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
    return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "code""yay" "book" "cmu"
"code"



You Do: Search a Hashtable

Let's say that we want to 
algorithmically check whether the 
string "friday" is in our 
hashtable.

You do: Which buckets does the 
algorithm need to check?

26

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
    return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"code"



Searching a Hashtable is Fast!

To search for a value, use the same 
algorithm you would use to insert that 
value. The index produced is the only index 
you need to check!

For example, we can check if "book" is in 
the table just by checking bucket 1.

If the value is in the table, it will be at that 
index. If it isn't, it won't be anywhere else 
either. To check for "stella" just look in 
in bucket 2.

Because we only need to check one index 
and each index holds a constant number of 
items, finding a value only takes O(1) time, 
even if the hashtable is huge. Wow!

27

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
    return alphabet.index(s[0])



Caveat: Don't Hash Mutable Values!

What happens if you try to put a list in a 
hashtable? Let's set lst = ["a", "z"] 
and use the given hash to add lst.

This might seem fine at first, but it will 
become a problem if you change the list 
before searching. Let's say we set      
lst[0] = "d".

When we hash the list again, the hashed 
value is 3, not 0. But the list isn't stored in 
bucket 3! We can't find it reliably.

For this reason, we don't put mutable 
values into hashtables. If you try to run the 
built-in hash on a list, it will crash.

28

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

"yay"
["d", "z"]

"book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
    return alphabet.index(s[0])



Dictionaries Use Hashed Search

Because hashed search requires immutable search values and a 
hashtable, it isn't used in lists or strings. However, it is used to 
implement dictionary search.

Recall that the keys of a dictionary must be immutable. This is because 
those keys are all stored in a hashtable. Each key points to its own 
value; that's how values can still be accessed.

This means that searching for a key in a dictionary is O(1)! Dictionaries 
are super efficient for basic lookup tasks.

29



Searching Dictionaries vs. Lists

This has a practical effect on the efficiency of the programs you write. Recall 
the built-in operator in, which checks for membership in a data structure.

item in lst runs in linear time if lst is a list, because Python can't 
guarantee that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary, because 
Python uses hashing.

If you know that you'll need to do a lot of searching for specific values, it's 
better to store your data in a dictionary than a list, even if it’s a sorted list!

30



The Power of Hashing

Hashed search is absurdly fast! It doesn't matter how large your 
dataset is; you can always look up a value in the same amount of time.

This ridiculous speed of hashed search has made search a common tool 
across all computational devices.

31



Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search tree 
(BST)

• Search for values in trees using linear search and in BSTs using binary 
search

• Analyze the efficiency of binary search on a balanced vs. unbalanced 
BSTs

• Recognize the requirements for building a good hash function and a 
good hashtable that lead to constant-time search

32


	Slide 1: Search Algorithms II
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Binary Search Trees
	Slide 5: Revisiting Search Algorithms
	Slide 6: Linear Search on a Tree
	Slide 7: Binary Search on a Tree
	Slide 8: Binary Search Trees (BSTs) are "sorted"
	Slide 9: Example: Is this a BST?
	Slide 10: Binary Search Trees Can Use Binary Search
	Slide 11: BST Search in Python
	Slide 12: BST Search Runtime – Balanced Trees
	Slide 13: BST Search Runtime – Unbalanced Trees
	Slide 14: Benefits of BSTs
	Slide 15: Can We Do Even Better?
	Slide 16: Optimizing Search: Constraints 
	Slide 17: Search in Real Life – Post Boxes
	Slide 18: Search in Programming – List Indexes
	Slide 19: Combine the Concepts
	Slide 20: Hash Functions Map Values to Integers
	Slide 21: Built-in Hash Function
	Slide 22: Optimizing Search: Hashtables
	Slide 23: Hashtables Organize Values
	Slide 24: Adding Values to a  Hashtable
	Slide 25: Dealing with Collisions
	Slide 26: You Do: Search a Hashtable
	Slide 27: Searching a Hashtable is Fast!
	Slide 28: Caveat: Don't Hash Mutable Values!
	Slide 29: Dictionaries Use Hashed Search
	Slide 30: Searching Dictionaries vs. Lists
	Slide 31: The Power of Hashing
	Slide 32: Learning Objectives

