Graphs

15-110 — Friday 10/10

* Final exam is scheduled: Friday 12/12 1-4pm
* Do not schedule travel before this date!
* Location TBD

 Next week: Fall Break! Have fun!

* No classes, no office hours, no guaranteed responses on Piazza from Saturday
10/11 - Sunday 10/19

* Midsemester grades will include:
* Exercises from weeks 1-4
* Checkl, Hw1, Check2, Hw2
e Quizlets 1-4 (with your lowest score dropped)
* Examl

e Canvas shows your current grade. That grade is calculated as follows, to reflect the fact
that the final exam correlates better with exam averages than homework averages:

* Exercise average x 4%

* Check average x 9%
 Homework average x 15%
e Quizlet average x 7%

* Examl x 65%

* If you did poorly on Exam1 and it's dragging down your %rade — don't panic! There's still
time to turn things around and improve on Exam2 and the final.

* Reach out to the professors or your TAs if you'd like to discuss strategies for improving your
learning process

* Please let us know what's working and what can be improved!

* Course Survey: https://bit.ly/110-f25-mid-course
* TA Survey: https://bit.ly/110-f25-mid-tas

* To thank you for your time, you get 3 bonus points on Hw4 for completing
both surveys.

* The survey itself is anonymous; follow the link provided when you submit the first
form and that will lead you to a second non-anonymous form you can fill out for
points.

* Complete the surveys by the Hw4 deadline (Monday 10/27 noon) for bonus points.

https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-course
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas
https://bit.ly/110-f25-mid-tas

* |dentify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

* Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

Graphs

Last time we discussed trees, which let us store data by connecting
nodes to each other to create a hierarchical structure.

Graphs are like trees — they are composed of nodes and connect those
nodes together. However, they have fewer restrictions on how nodes
can be connected. Any node can be connected to any other node in

the graph.

Graphs show up all the time in real-
world data. We can use them to
represent maps (with locations
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in
algorithms, to represent data like
social networks (with people
connected by friendships), or
recommendation engines (with
items connected if they were
purchased together).

The nodes in a graph are the same
as the nodes in a tree — they hold
the values stored in the structure.

The edges of a graph are the
connections between nodes.

We say that for a node X, any
nodes that X connects to with an
edge are X's neighbors.

—

-

E's neighbors

Sometimes edges can have
weights, such as the length of a
road or the cost of a flight. Our
example graph here has weights-
the numbers next to lines.

A graph with no weights is an
unweighted graph; a graph with
weights is a weighted graph.

Edges can also be directed (from A to
B but not from B to A unless there is
another directed edge from B to A),
or undirected (go in either direction
on an edge between nodes).

The graph to the right is directed; for
example, you can only go from G to
E, not from E to G. The previous
graphs we saw were undirected.

Technically D is F's neighbor, but F
is not D's neighbor, because you
can't gofrom D to F.

Consider the graph to the right.

How many nodes does the graph have?
How many edges?

Do the edges have weights?

Are the edges directed?

What are the neighbors of node F?

Coding with Graphs

Like trees, graphs are not implemented directly by Python. We need to
design an implementation using existing syntax.

Our implementation for this class will use a dictionary that maps node
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be recursively nested
dictionaries; we'll be able to access all the node values directly. That's
because graphs aren't inherently recursive.

We'll need to slightly alter this representation based on whether or not
the edges of the graph have weights.

First, how do we represent an °
unweighted graph? ° e
The keys of the dictionary will be the G

values of the nodes. Each node maps to
a list of its adjacent nodes (neighbors), ~ unweightedGraph = {

o o

the nodes it has a direct connection to. g : "i:,’ (c;
"C" "B": "H"
: D" : ["F"],
On the right, we show our example e "G", K
graph in its dictionary implementation. np "D" 1,
"G "A", "E'
"H "c", "E'
}

QT

Weighted graphs have values
associated with the edges. We need to
store these values in the dictionary also.

We'll do this by changing the list of
adjacent nodes to be a 2D list. Each of
the inner lists represents a node/edge
pair, so it has two values — the adjacent
node's value and the weight of the
edge.

On the right, we show our updated
example graph in this format.

weightedGrap

A

TOTMmMYOn®

h

[
o
L
[
L
o
[
L

[B e T s B s I s T s B e I s I | |

SR ACIORUIL T T

- & - - = - -
o > o o > o o >

51, ["G"
5], ['C’
3], [

41 1,

1], ["W

4] 1,

2], [’
o], ["F’

Let's look at some basic examples of programming with graphs.

To print all the nodes in a graph, just look at every key in the dictionary.

def printNodes(g):
for node in g:
print(node)

17

Finding a Node's Neighbors

If we want to get the neighbors of a particular node, index into that node in the
dictionary.

def getNeighbors(g, node):
return g[node]

If the graph is weighted, we'll need to reconstruct the neighbor list:

def getNeighbors(g, node):
neighbors = []
for pair in g[node]:
neighbors.append(pair[0])
return neighbors

18

Finding a Graph's Edges
To print all the edges, you'll need to loop over each value in the neighbor list.

def printEdges(g):
for node in g:
for neighbor in g[node]:
print(node + "-" + neighbor)

Note that this example is for an unweighted graph. To get neighbor values in a
weighted graph, index into neighbor[0] .

19

Finding an Edge's Weight

Finally, to find an edge's weight, index and loop to find the appropriate
pair.

def getEdgeWeight(g, nodel, node2):
for pair in g[nodel]:
if pair[@] == node2:
return pair[1]

20

Now that we have the basics, we can
start problem solving.

Let's write a function that takes a social
network as a graph and returns the
person in the network who has the
most friends.

This is just our typical find-largest-
property algorithm applied to a graph.

rlenne

def findMostPopular(g):
biggestCount = ©
mostPopular = None
for person in g:
if len(g[person]) > biggestCount:
biggestCount = len(g[person])
mostPopular = person

return mostPopular 21

Now let's say a person wants to make

more friends, so they're holding a party. .

They want to invite their own friends,
but also anyone who is a friend of one def makeInviteList(g, person):

of their friends. # start with immediate friends

invite = g[person] + [] # break alias

Now we have to loop over each of the for friend in g[person]:
person's friends, to access that node's # find friends-of-friends
own list of friends. for theirFriend in g[friend]:

if theirFriend not in invite and \
theirFriend != person:
invite.append(theirFriend)

return invite 29

You do: Given an unweighted graph of a
social network (like in the previous two
examples) and two nodes (people) in the
graph, return a list of the friends that those
two people have in common.

For example, in the graph shown to the
right, calling friendsInCommon on "Jon"
and "Jaime" would return the list |
"Tyrion"].

Hint: start by looping over all the friends of
the first person. Check whether any of them
are also friends of the second person and
add them to a result list if they are.

"Jon" : ["Arya", "Tyrion"],

"Tyrion" : ["Jaime", "Pod", "Jon"],
"Arya" : ["Jon"],

"Jaime" : ["Tyrion", "Brienne"],
"Brienne" : ["Jaime", "Pod"],

"Pod" : ["Tyrion", "Brienne", "Jaime"],
"Ramsay" :

[]
C e >

S

Brienne

23

* |dentify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

* Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

	Slide 1: Graphs
	Slide 2: Announcements
	Slide 3: Midsemester Grades
	Slide 4: Midsemester Survey
	Slide 5: Learning Goals
	Slide 6: Graphs
	Slide 7: Graphs are Like More-Connected Trees
	Slide 8: Graphs in the Real World
	Slide 9: Graphs are Made of Nodes and Edges
	Slide 10: Edges Can Have Weights
	Slide 11: Edges Can Have Directions
	Slide 12: Activity: Recognize the Parts
	Slide 13: Coding with Graphs
	Slide 14: Represent Graphs in Python with Dictionaries
	Slide 15: Graphs in Python – Unweighted Graphs
	Slide 16: Graphs in Python – Weighted Graphs
	Slide 17: Finding a Graph's Nodes
	Slide 18: Finding a Node's Neighbors
	Slide 19: Finding a Graph's Edges
	Slide 20: Finding an Edge's Weight
	Slide 21: Example: Most Popular Person
	Slide 22: Example: Make Invite List
	Slide 23: Activity: friendsInCommon(g, p1, p2)
	Slide 24: Learning Goals

