Trees

15-110 — Wednesday 10/08



Quizlet4



* |[dentify core parts of trees, including nodes, children, the root, and
leaves

* Use binary trees implemented with dictionaries when reading and
writing code



Trees



Sometimes we work with data that is hierarchical in nature. In this

context, 'hierarchical' means that data occurs at different levels that
are connected in some way.

Hierarchical data shows up in many different contexts.

* File systems in computers — each folder is a rank above the files it contains
 Company organization schemas — the CEO at the top, interns at the bottom
e Sports tournament brackets — the overall winner is ranked highest
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A tree is a hierarchical data structure
composed of nodes (circles in the
example shown to the right).

Each node can hold a value (its
data).

The node connected the level above
a node is called its parent, and nodes
connected on the level below are
called its children. In general, a node
has exactly one parent and can have
any number of children.

node 5's parent

value 5

node 5's children



Unlike real trees, trees in computer science
grow downward!

The top-most node is called the root. Every
non-empty tree has a root. The root has no
parent.

A node can have other nodes as children,
and those nodes can have children as well.
The number of levels a tree can have is
unlimited.

Nodes that have no children are called
leaves.

leaves

levels



A tree is a naturally recursive data structure.
Each node's children are subtrees, which are
just trees again.

For example, the root node 3 has two
children that are subtrees. The subtree on
the left has a root node 5. The subtree on the
right has a root node 7. Each of these root
nodes have their own subtrees as children.

Our base case can usually be an empty tree.

The recursive case makes the problem
smaller by removing the root and repeating
on each of the children, which are also trees.

subtree

root

g

subtree



: , , , 6's left child 6's right child
It's possible to write algorithms a

for trees that have an arbitrary
number of children, but in this

class we'll focus on binary trees. e a

A binary tree is a tree that can
have at most 2 children per node.
We assign these children names-
left and right, based on their
position.



Given the tree shown to the right:
* What is the root?

e What are the children of node
X?

 What is the node X's parent?
* What are the leaves?



Coding with Trees



Computer science uses a large number of classical data structures.
Some of these are implemented directly by Python. Others are not
implemented directly; we need to design an implementation ourselves.
The way we design the implementation will affect the data structure's
efficiency!

Python implements lists and dictionaries, but not trees. We'll design
our own trees using recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them
and add/remove nodes. That's beyond the scope of this class, though.



Python Syntax — Trees as Dictionaries O

6,

An empty tree is represented as None.

Each node of the tree will be a dictionary that
has three keys.

t =

* The first key is the string "contents”,
which maps to the value in the node.

* The second key is the string "1left", which
either maps to a tree (dictionary)hif the
node has a left child, or None if there is no
left child.

* The third key is the string "right", which
either maps to a tree (dictionary) if the

node has a right child, or None if there is no
right child.

Our example tree is written as a dictionary to
the right.
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Simple Example: getChildren(t)

Given a tree, how can we get the
values of the children of the root
node?

Access the "left" and "right”
subtrees directly, then access their
"contents”, if they exist.

Note that we use two separate 1fs,
not an if-elif, because it's
possible for both to be True.

def getChildren(t):

if t == None:
return []
result = []

left = t["left"]
if left = None:
result.append(left["contents"])

right = t["right"]
if right != None:
result.append(right["contents"])

return result
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Because this is a recursive data structure, we'll usually need to use

recursion to operate on trees.

The base case is when we reach an empty tree.

In the recursive case, we'll often call the function recursive
left child and then call again on the right child. Usually we'l
combine those results in some way with the root node's va

y on the
then
ue.



Example: countNodes

How can we count the number of def countNodes(t):

nodes in a tree? if t == None:
return 9
Base case: an empty tree has 0 else:
nodes.
count = ©

count += countNodes(t["left"])

Recursive case: a non-empty tree Y .
has the total number of ngdés in count += countNodes(t["right"])
the two subtrees, plus the current return count + 1

node.
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Example: countEven(t)

What if we instead wanted to count all the even def countEven(t):

numbers in a tree? Now we'll need to use the if t == None:
nodes' values. return ©
else:

if t["contents"] % 2 == O:
Base case: an empty tree has no values; return
0 result = 1

else:

Recursive case: determine if the root node's result = ©

value is even or not, then add in the counts of

the two subtrees.
result += countEven(t["left"])

result += countEven(t["right"])
Like the previous recursive problems we solved, return result
we have to combine the leftover part with the

recursive calls.
17



You do: write the function 1istValues(t), which takes a tree and returns

a list of all the values in the tree. The values can be in any order, but try to
put them in left-to-right order if possible.

Hint: consider the type of the values you'll return.

Given our example tree (shown below), the function returns:
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 13.



* |[dentify core parts of trees, including nodes, children, the root, and
leaves

* Use binary trees implemented with dictionaries when reading and
writing code



[Optional] Advanced Example: Family Trees

Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree — the person creating the tree is at the root, their
parents are the node's children, etc.

grandparents ‘g

parents

person
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[Optional] Advanced Example: getPastGen

We want to find all the child's def getPastGen(t, n):
ancestors from N generations ago. if t == None:
N=1 would be their parents; N=2 return [ ]
would be grandparents; etc. elif n ==

return [ t["contents"] ]
Note that for this problem, we see i

gen = [ ]

have an additional base case —
when we reach the level we're
looking for.

gen += getPastGen(t["left"], n-1)
gen += getPastGen(t["right"], n-1)

return gen
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