
Runtime and Big-O Notation
15-110 – Monday 10/06



Announcements

• Hw3 was due today

• How did it go?

• No Check4 due to fall break. Hw4 is extra-large instead – start early
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Announcements

• Exam1 grades have been released. Median: 86. Well done!
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Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function or algorithm's efficiency using Big-O 
notation
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Efficiency = Time = Money

We talk about efficiency a lot in this unit. Why do we care?

Computers are fast, but they can still take time to do complex actions. 
Faster algorithms can save lives, reduce user frustration, and increase 
company profits.

A major goal of computer scientists is not just to make algorithms that 
work, but algorithms that work efficiently.
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Comparing Search Algorithms
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Comparing Linear vs. Binary Search

Recall our comparisons of linear search vs. binary search in the 
previous lectures. How can we compare these algorithms at an abstract 
level?

We could run them on the same input and time them. However, how 
quickly a program runs varies based on lots of factors (the 
implementation, the machine, which other programs are running, etc.)

Instead, we'll count the number of actions the program takes on a 
given input. This lets us abstract away any noise.
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Counting the number of actions

What actions might we count? Some lines of code may compose multiple 
operations into one line, and some actions may take longer than others to 
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we could choose 
some specific action and count how many times the algorithm runs that 
action based on the size of the input.

For example, in linear and binary search we can count the total number of 
comparisons to the target (a basic action) based on the length of the list 
(the size of the input).
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1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, target):

  if len(lst) == 0:

    return False

elif lst[0] == target:

    return True

  else:

    return linSearch(lst[1:], target)

How many list elements are compared to 
66 in this list of 15 elements?  
 linear search: 9 elements
 binary search: 4 elements

def biSearch(lst, target):

  if lst == [ ]:

    return False

  else:

    mid = len(lst) // 2

if lst[mid] == target:

      return True

    elif target < lst[mid]:

      return biSearch(lst[:mid], target)

    else: # lst[mid] < target

      return biSearch(lst[mid+1:], target)
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Best Case, Worst Case
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Best Case and Worst Case

To truly compare the algorithms, it isn't enough to test them on a 
random example. We want to know how they'll do in the best case and 
in the worst case. Those cases are defined based on the input to the 
function.

Best case: an input of abstract size n that results in the algorithm  
taking the least steps possible.

Worst case: an input of abstract size n that results in the algorithm 
taking the most steps possible.
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Best Case and Worst Case – Linear Search

What's the best case for linear search?

 Answer: a list where the item we search for is in the first position

What's the worst case for linear search?

 Answer: a list where the item we search for is not in the list.
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Best Case and Worst Case – Binary Search

You do: what's the best case input and worst case input for binary 
search if we're counting comparisons?
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Best Case/Worst Case Actions

How many actions do we perform in the best case?

For both linear search and binary search, there's just one 
comparison – when you find the item with the first comparison, you 
can exit the function immediately.

How many actions in the worst case?

In linear search, we have to check every single element. If the list 
has n elements, we do n comparisons before knowing the element 
is not in the list.

What about binary search?
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Worst Case Action Count – Binary Search

Each call to binary search compares one item to the target. How many recursive calls 
(and therefore comparisons) do we make to binary search for different length lists?
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List size Number of recursive calls

1 1

1*2 + 1 = 3 2

3*2 + 1 = 7 3

7*2 + 1 = 15 4

15*2 + 1 = 31 5

2k - 1 k

n log2(n)

When the input length 
doubles for linear search, it 
does twice as many 
comparisons.

But, when the input length 
doubles for binary search, 
it does just one more 
comparison!



Sidebar: Calculating Efficiency

Our implementation of binary search only looks better than our 
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to 
create a copy of the list. Our recursive implementations of linear and 
binary search both slice the list on every call.

This is inefficient – we're doing more work than we need to! A better 
approach would be to pass the reference of the original list and change 
the indexes checked instead of changing the list itself.
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Function Families
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Function Families

When we count the actions taken by algorithms, we don't really care 
about one-off operations; we care about how the number of actions 
grows with the size of the input (the function parameters).

We'll call the abstract size of the input for a function n. This could be 
the number of elements in a list or the number of characters in a string.

In math, a function family is a set of equations whose outputs all grow 
at the same rate as their inputs grow. For example, an equation might 
grow linearly (at the rate of n) or quadratically (at the rate of n2). We 
can use function families to group together algorithms too!
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Common Function Families
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n (amount of data)

Number of

Operations

Exponential (2n)

Constant

Logarithmic (log n)

Quadratic (n2)

Linear (n)



Function Families and Constants
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Notice that as n grows, 
the function family 
becomes much more 
important than the 
constants, and 
functions with the 
same function family 
behave similarly.logarithmic



Alternate Visualization

Here's another way to think about the function families. Consider what happens when you 
double the size of the input.
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Constant double input, no 
  change in actions

Input Size Actions Taken

Logarithmic double input,
  +1 action

Linear  double input,
  double actions

Quadratic double input, 
  quadruple actions

Exponential double input, many 
  many more actions!



Big-O Notation
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Big-O Notation

When we determine a program or algorithm's runtime, we ignore 
constant factors and smaller terms. All that matters is the function family 
based on the dominant term (highest power of n). That is the idea of Big-O 
notation.
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# actions Big-O

n O(n)

32n + 23 O(n)

5n2 + 6n + 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the   
Big-O of an algorithm refers to its 
runtime in the worst case 
(computer scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS 
classes, you'll learn more about how Big-O actually works.



Big-O of Linear Search / Binary Search

Because runtime for linear search is proportional to the length of the 
list in the worst case, it is O(n). Every time we double the length of the 
list, binary search does just one more comparison in the worst case; it 
is O(log n).
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Binary search is 
incredibly fast. Linear 
search is exponentially 
slower in the worst case!

binary



Big-O Calculation Strategy

We'll often need to calculate the Big-O of an algorithm or a piece of 
code to determine how efficient it is and whether we can make it 
better.

We can determine an algorithm's Big-O by determining how many 
actions take place based on the size of the input. We can often do a 
rough estimate of actions by just counting the number of statements 
that will run. This can be affected by function calls and loops.
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Sequential Statements are Added

First, if you have statements that run sequentially, the runtime for each 
statement is added to the total runtime.

def example(x): # n = x

    x = x + 5 # O(1)

    y = x + 2 # O(1)

    print(x, y) # O(1)

# Total: O(1)
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Note: O(1) means constant 
time; the statement is not 
affected by the size of the 
input.



Functions Have Their Own Runtimes

What if we call a function? We need to add that function's runtime to 
the overall runtime. Note that it may not be O(1)!

def printContains(lst, x): # n = len(lst)

    result = linearSearch(lst, x) # O(n)

    print(x, "in lst?", result) # O(1)

# Total: O(n)
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Loops Multiply Runtimes

Most non-constant runtimes come from some use of loops (or recursion). 
This is because loops let us repeat actions, so we have to multiply the 
runtime of the loop body by the number of times the loop repeats.

def checkForAll(lst1, lst2): # n = len(lst1) = len(lst2)

    for i in range(len(lst1)): # n repetitions

        printContains(lst2, lst1[i]) # O(n) (from last slide)

# Total: O(n2)
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Conditionals are Sequential

If we multiply loop bodies by the number of repetitions, do we do the same thing to 
conditionals?

No! Conditionals act more sequentially – in the worst case you run the Boolean test, then 
you run the body. You should add the two together.

def valueInBoth(lst1, lst2, value): # n = len(lst1) = len(lst2)

    if linearSearch(lst1, value): # O(n)

        return linearSearch(lst2, value) # O(n)

    return False # O(1)

# Total: O(n)
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Be Careful of Built-in Runtimes!

Functions we define aren't the only ones that can have non-constant runtimes; 
some of the built-in Python functions and operations have non-constant runtimes 
too!

def countAll(lst): # n = len(lst)

    for i in range(len(lst)): # n repetitions

        count = lst.count(i) # O(n)

        print(i, "occurs", count, "times") # O(1)

# Total: O(n2)

We'll let you know on assignments and exams when a built-in method or operation 
is not constant time. Except for in, which just implements linear search – therefore 
in applied to a list or string will run in O(n)!
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Common Big-O Runtimes
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O(1) is Constant Time

def swap(lst, i, j): # n = len(lst)

    tmp = lst[i]

    lst[i] = lst[j]

    lst[j] = tmp
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Does the runtime of this algorithm 
depend on the number of items in the 
list?
   Answer: No.

This algorithm is constant time or O(1); 
its time does not change with the size 
of the input.



O(log n) is Logarithmic Time

def countDigits(n): # n = n

    count = 0

    while n > 0:

        n = n // 10

        count = count + 1

    return count
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Every time you increase n by a factor 
of 10, you run the loop one more time. 
All the operations in the loop are 
constant time. Similar to binary search, 
the algorithm is logarithmic time, or 
O(log n).

Even though this is log10(n), we don't 
include the base in the Big-O notation 
because a change of base is just a 
multiplicative factor.



O(n) is Linear Time

def countdown(n): # n = n

    for i in range(n, -1, -5):

        print(i)
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This code will loop n/5 times overall. If 
we double the size of n, how many 
more times do we go through the 
loop?

Answer: We double the number of 
times through the loop. That is linear 
time, or O(n), as it is proportional to 
the size of n. Stepping by 5 doesn't 
change the function family.



O(n2) is Quadratic Time

def multiplicationTable(n): # n = n

    for i in range(1, n+1):

        for j in range(1, n+1):

            print(i, "*", j, "=", i*j)

This seems tricky at first, but note that every iteration of the outer loop will 
do all the work of the inner loop.

The inner loop does n total iterations (with O(1) work in its body). This is 
repeated n times by the outer loop. Therefore, the entire runtime is O(n2).
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O(2n) is Exponential Time

# n = discs
def moveDiscs(start, tmp, end, discs):
    if discs == 1:
        print("Move one disc from", 
              start, "to", end)
    else:
        moveDiscs(start, end, tmp, discs - 1)
        moveDiscs(start, tmp, end, 1)
        moveDiscs(tmp, start, end, discs - 1)
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This is Towers of Hanoi. 
Every time we add 1 disc 
we double the number of 
moves. That's exponential 
time, or O(2n).

O(2n+1) = O(2n) + O(2n)



For Recursion, Look at the Number of Calls

Is all recursion exponential? Not necessarily! It depends on the number of recursive calls 
the function will need to make.

def countdown(n): # n = n

    if n <= 0:

        print("Finished!")

    else:

        print(n)

        countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on 
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be made. 
The function is O(n).
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Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code. 

def sumEvens(lst): # n = len(lst)

    result = 0

    for i in range(len(lst)):

        if lst[i] % 2 == 0:

            result = result + lst[i]

    return result
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[if time] Complex Big-O Example

Let's look at a more complex example together:

1: def example(lst): # n is len(lst)

2:     result = []

3:     for i in range(0, len(lst), 2):

4:          if lst[i] != lst[i+1]:

5:             average = (lst[i] + lst[i+1]) / 2

6:             if average in lst:

7:                 result.append(average)

8:     return count
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Line 3 iterates n/2 times – we 
should multiply that by the 
work done by the loop body.

Line 4 is a conditional with a 
constant check – add it to the 
rest of the loop body.

Line 6 is a conditional with a 
O(n) check – add n to the rest 
of the body.

Lines 2, 5, 7, and 8 don't 
depend on the size of the 
input; they're constant 
actions.Runtime: constant + n/2 * (constant + constant + n + constant) =

constant + constant * n2 + constant * n = O(n2)



Additional Learning: High-Speed Trading

Want more examples of how efficiency impacts real life? Check out this 
podcast episode on high-speed computer trading (where milliseconds 
make the difference between profit and loss):

https://radiolab.org/episodes/267124-speed 
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https://radiolab.org/episodes/267124-speed
https://radiolab.org/episodes/267124-speed
https://radiolab.org/episodes/267124-speed


Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function or algorithm's efficiency using Big-O 
notation

41


	Slide 1: Runtime and Big-O Notation
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Learning Objectives
	Slide 5: Efficiency = Time = Money
	Slide 6: Comparing Search Algorithms
	Slide 7: Comparing Linear vs. Binary Search
	Slide 8: Counting the number of actions
	Slide 9: Linear vs. Binary Search: Search for 66
	Slide 10: Best Case, Worst Case
	Slide 11: Best Case and Worst Case
	Slide 12: Best Case and Worst Case – Linear Search
	Slide 13: Best Case and Worst Case – Binary Search
	Slide 14: Best Case/Worst Case Actions
	Slide 15: Worst Case Action Count – Binary Search
	Slide 16: Sidebar: Calculating Efficiency
	Slide 17: Function Families
	Slide 18: Function Families
	Slide 19: Common Function Families
	Slide 20: Function Families and Constants
	Slide 21: Alternate Visualization
	Slide 22: Big-O Notation
	Slide 23: Big-O Notation
	Slide 24: Big-O of Linear Search / Binary Search
	Slide 25: Big-O Calculation Strategy
	Slide 26: Sequential Statements are Added
	Slide 27: Functions Have Their Own Runtimes
	Slide 28: Loops Multiply Runtimes
	Slide 29: Conditionals are Sequential
	Slide 30: Be Careful of Built-in Runtimes!
	Slide 31: Common Big-O Runtimes
	Slide 32: O(1) is Constant Time
	Slide 33: O(log n) is Logarithmic Time
	Slide 34: O(n) is Linear Time
	Slide 35: O(n2) is Quadratic Time
	Slide 36: O(2n) is Exponential Time
	Slide 37: For Recursion, Look at the Number of Calls
	Slide 38: Activity: Calculate the Big-O of Code
	Slide 39: [if time] Complex Big-O Example
	Slide 40: Additional Learning: High-Speed Trading
	Slide 41: Learning Objectives

