
Exam 1 Review
15-110 – Monday 09/29



Announcements

• Check3 was due today

• Check2/Hw2 revision deadline tomorrow (Tuesday) at noon!

• No Gradescope exercise today (no new material)

• Exam1 on Wednesday!
• Bring your paper notes (<= 5 pages), something to write with, and your andrewID

card
• Arrive early if possible – we're checking IDs at the door

2



Announcements – Code Reviews

• Code reviews!
• What: meet with a TA for 10-15 minutes to get qualitative feedback on your code from your Hw2 

submission. Attending the meeting and actively participating gets you 5 points on Hw3.
• Why: code style and structure are important, but not assessed by the autograder. The TA will point 

out different ways to solve the problems and areas where you can code more clearly or more 
robustly

• Some students may be exempted from this meeting if they already have good style. We’ll let you know if you're 
in that group by Monday EOD.

• When: this weekend (Saturday-Sunday, a few slots on Monday)
• Where: TA's choice

• How to sign up for a code review slot
• Link: https://www.cs.cmu.edu/~110/hw/hw2-code-review.html 
• Important: sign-ups for each TA slot close 5pm Friday
• Also important: don't be late! If you are more than 3 minutes late to your meeting, you will not 

get credit on Hw3.
• If something comes up and you need to cancel, notify the TA at least an hour before your timeslot. Do 

not do this multiple times.

3

https://www.cs.cmu.edu/~110/hw/hw2-code-review.html
https://www.cs.cmu.edu/~110/hw/hw2-code-review.html
https://www.cs.cmu.edu/~110/hw/hw2-code-review.html
https://www.cs.cmu.edu/~110/hw/hw2-code-review.html
https://www.cs.cmu.edu/~110/hw/hw2-code-review.html


Review Topics

• Looping over Strings

• Nesting

• Addition in Circuits

4



Looping Over Strings

5



Strings are Made of Characters

Strings are naturally composed of many individual parts – the 
individual characters that compose the string. This means we can 
write algorithms that work with the individual parts, using a loop.

How do we access a single character out of a string? Use indexing!

s = "testing"

i = 3

s[i] # "t"

6



Loop Over Indexes

How can we access all the characters in the string? Use a loop to visit 
each character, one at a time.

For now it's easiest to loop over the indexes of the string. Start at 0, 
increment by 1, and end at len(s); we can use range(len(s)) to 
visit all the positions.

for i in range(len(s)):

 print("Character:", s[i])

7



Problem Solving with Strings

What do we do inside a loop? It depends on the problem we're 
solving.

Let's look at a few common examples…

8



countUpper

Problem: given a string, count the number of uppercase characters in 
the string.

def countUpper(s):

    result = 0

    for i in range(len(s)):

        if s[i].isupper():

            result = result + 1

    return result

9



makeMatch

Problem: given two strings of equal length, make a new 'match' string. To make this 
string go through each position in the strings; if the characters at the same position are 
the same, include it; otherwise put an "X" at that position. For example, 
makeMatch("cat", "car") -> "caX"

def makeMatch(s1, s2):

    result = ""

    for i in range(len(s1)):

        if s1[i] == s2[i]:

            result = result + s1[i]

        else:

            result = result + "X"

    return result

10



You do: usesLetters

Problem: the function usesLetters is given two strings, word and 
letters, and returns True if word only contains characters in the 
string letters, and False otherwise. For example:

usesLetters("happy", "ahpy") -> True

usesLetters("happy", "ahnry") -> False

usesLetters("aaaaaaa", "par") -> True

11



Nesting

12



Nesting Changes a Program's Control Flow

Nesting is the process of indenting control structures so that they 
occur inside other control structures. It is used to manipulate the 
control flow of a program to produce certain intended effects.

So far, we've learned about several control structures: function 
definitions, conditionals, while loops, and for loops. All of these 
structures have bodies, and each can be indented so it occurs inside 
the body of another structure.

13



Common Nested Structures - Functions

Though any nesting configuration you can think of is possible, some 
arrangements are more common than others.

Functions – we usually write function definitions at the top level of a program 
and nest conditionals/loops inside them when they're needed. When we return 
in a nested conditional/loop, we exit that structure and the whole function 
immediately.

def hasVowels(s):

    for i in range(len(s)):

        if s[i] in "aeiou":

            return True

    return False

Note how the loop is indented inside the 
function, and its body is indented again.

If the line return True is reached, the 
function will exit immediately without 
finishing the loop.

14



Common Nested Structures - Functions

It’s also common to include a function call inside the definition of another function.

You do: what will this print?

def foo(a, b):

    y = a + b

    print("y in foo:", y)

    return y + 3

def bar(x):

    y = x + 1

    print("y in bar:", y)

    return foo(x, y)

print(bar(4)) 15



Common Nested Structures – Loop-Conditionals

Loop-Conditional – very often we nest a conditional inside a loop to check a certain 
property for every element that is iterated over.

While it's possible to pair an else with the nested if, it's only used if there's a clear 
alternative action. It's okay to do nothing on iterations that don't meet the requirement!

def countVowels(s):

    result = 0

    for i in range(len(s)):

        if s[i] in "aeiou":

            result = result + 1

    return result

We don't need to update 
result if the letter isn't a 
vowel, so do nothing instead.

16



Common Nested Structures – Nested Loop

Nested Loop – if you need to iterate over multiple dimensions, a nested loop (one 
loop nested inside another) will manage the complex iteration. Each loop control 
variable manages one dimension.

It's important that the two loop control variables have different names, so that they 
can be referred to separately.

def coordinates(x, y):

    for xNum in range(x):

        for yNum in range(y):

            print("(" + str(xNum) + ", " +

                        str(yNum) + ")")

The outer loop moves more 'slowly', 
as it only iterates once for each 
complete working of the inner loop.

17



Addition in Circuits

18



Addition Using Circuits

Let's consider this problem a new way by starting from the goal and working 
backwards. How can we teach a computer to add two numbers?

(Why do we care about this? Computers can only take actions that are built 
into their hardware. We need to implement the core algorithmic actions – 
including addition! – if we want to build programs that do interesting things.)

We can't just provide the computer numbers like 127 and 86- we have to 
translate them to binary first. That way, the computer can store them as 
high/low levels of electricity.

19



Adding Large Numbers

How do you as a human approach the task of adding two really large 
numbers? You break it up into parts and solve each part 
independently.

  1 2 7

+   8 6

-------

An n-bit adder will work the same way, by adding one column of 
numbers at a time. But it will add binary digits, not decimal digits.

20



Adding Large Numbers

In decimal addition, you sometimes have to 
carry a digit to the next column. The same 
happens in binary addition.

• That means we need two output bits (the sum 
for this column, and the carry to the next)

• We also need an extra input bit to hold the carry 
from the previous column

There are only three inputs (two digits and a 
carried digit), so treat this like learning the 
multiplication table. Memorize all the possible 
inputs and their outputs.

21

0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11



Adding Large Numbers

Using some problem solving beyond the scope of this class, we can 
figure out which gates to use to correctly generate the sum and carry 
bits from the three inputs.

Cin X Y Cin + X + Y Cout Sum

1 1 1 11 1 1

1 1 0 10 1 0

1 0 1 10 1 0

1 0 0 01 0 1

0 1 1 10 1 0

0 1 0 01 0 1

0 0 1 01 0 1

0 0 0 00 0 0
22



Put it all together

Once we have a circuit that can add a whole column of digits (a full 
adder), just chain it together with other full adders to add as many 
digits as you need.

We 'carry' digits by passing the Cout result from one column to the Cin 
input of the next.

23



Half Adders

Why did we learn about half adders if they aren't used in the final n-
bit adders?

Half adders provide a simplified approach to adding a single column 
of numbers. They only work when a number hasn't been carried over, 
but it's easier to see how the table maps to the circuit.

24


	Slide 1: Exam 1 Review
	Slide 2: Announcements
	Slide 3: Announcements – Code Reviews
	Slide 4: Review Topics
	Slide 5: Looping Over Strings
	Slide 6: Strings are Made of Characters
	Slide 7: Loop Over Indexes
	Slide 8: Problem Solving with Strings
	Slide 9: countUpper
	Slide 10: makeMatch
	Slide 11: You do: usesLetters
	Slide 12: Nesting
	Slide 13: Nesting Changes a Program's Control Flow
	Slide 14: Common Nested Structures - Functions
	Slide 15: Common Nested Structures - Functions
	Slide 16: Common Nested Structures – Loop-Conditionals
	Slide 17: Common Nested Structures – Nested Loop
	Slide 18: Addition in Circuits
	Slide 19: Addition Using Circuits
	Slide 20: Adding Large Numbers
	Slide 21: Adding Large Numbers
	Slide 22: Adding Large Numbers
	Slide 23: Put it all together
	Slide 24: Half Adders

