
Week: 05​ ​ ​ ​ ​ ​ ​ ​ ​ Date: 09/25/2025

15-110 Recitation Week 5

Reminders

●​ Recitation feedback form
●​ Check 3 due Monday, Sept. 29 @ noon
●​ Check 2 and HW 2 revisions due Tuesday, Sept. 30 @ noon
●​ Midterm 1 on 10/01

o​ Review Sessions
o​ Small groups!
o​ OH and Piazza are always there for individual help

Overview

●​ Aliasing
●​ List methods
●​ 2D lists
●​ Recursion

https://docs.google.com/forms/d/e/1FAIpQLSdmDI_O2QXLQlB5byfC3QhWzUwTaNenNC3Bdk3BVdoXUyJWBQ/viewform

Problems

LIST ALIASING

Code trace and compare the following two options for ways to create “empty” 2D lists:

Option 1:

inner = [0, 0, 0, 0]​
outer = [inner, inner, inner]

Option 2:

rows = 3​
outer = []​
for row in range(rows):​
 outer.append([0, 0, 0, 0])

For each option, after running the code above, what are the values in outer?

Option 1: outer =

Option 2: outer =

After adding the following line of code and running it:

outer[0][0] = 42

What are the values in outer? ​

Option 1: outer =

Option 2: outer =

Be sure you can explain what difference you are seeing, and which option you should use and why.

LIST CODE WRITING

Write a function removeMatches(L, matchList) that takes in a list of numbers L, and removes all of the

elements in L that are also in matchList.Write both a non-destructive and destructive version of this

function.

Say we have L = [1,2,3,4,5].

Then, removeMatches(L, [1,5,10,15]) returns [2,3,4]. When it finishes running, L =

[1,2,3,4,5].

And destructiveRemoveMatches(L, [1,5,10,15]) returns None, but L = [2,3,4] when

done running.

Non-destructive:​​ ​ ​ ​ Destructive:

2D LIST CODE TRACING
Examine the mystery function below. What would the following function calls return?

def mysteryFunction(rows, cols):

 outerList = []

 for i in range(rows):

 innerList = []

 for j in range(cols):

 if j % 2 == 0:

 innerList.append(i)

 else:

 innerList.append("wow")

 outerList.append(innerList)

 return outerList

Function calls:

mysteryFunction(3,4)

mysteryFunction(5,3)

​

RECURSION INTRO

Base Case

Recursive Case

​
Rewrite the following function using recursion (write on the right empty space):​

def double(lst): ​
 result = []​
 for i in range(len(lst)):​
 result.append(2 * lst[i])​
 return result​
​
​
double([1,2,3]) -> [2,4,6]

	LIST ALIASING
	LIST CODE WRITING
	2D LIST CODE TRACING
	RECURSION INTRO

