Week: 05									Date: 09/25/2025
	15-110 Recitation Week 5

Reminders
· Recitation feedback form
· Check 3 due Monday, Sept. 29 @ noon
· Check 2 and HW 2 revisions due Tuesday, Sept. 30 @ noon
· Midterm 1 on 10/01
· Review Sessions
· Small groups!
· OH and Piazza are always there for individual help

Overview
· Aliasing
· List methods
· 2D lists
· Recursion

	Problems

[bookmark: _fxm4gpz450c0]LIST ALIASING
Code trace and compare the following two options for ways to create “empty” 2D lists:
Option 1:
inner = [0, 0, 0, 0]
outer = [inner, inner, inner]

Option 2:
	rows = 3
outer = []
for row in range(rows):
 outer.append([0, 0, 0, 0])

For each option, after running the code above, what are the values in outer?

Option 1: outer =

Option 2: outer =

After adding the following line of code and running it:

outer[0][0] = 42

What are the values in outer?

Option 1: outer =

Option 2: outer =

Be sure you can explain what difference you are seeing, and which option you should use and why.
[bookmark: _gjdgxs]LIST CODE WRITING
Write a function removeMatches(L, matchList) that takes in a list of numbers L, and removes all of the elements in L that are also in matchList.Write both a non-destructive and destructive version of this function.

Say we have L = [1,2,3,4,5].
Then, removeMatches(L, [1,5,10,15]) returns [2,3,4]. When it finishes running, L = [1,2,3,4,5].
And destructiveRemoveMatches(L, [1,5,10,15]) returns None, but L = [2,3,4] when done running.

Non-destructive:					 Destructive:
	

	

[bookmark: _6qx64ix3dlbs]2D LIST CODE TRACING
Examine the mystery function below. What would the following function calls return?

def mysteryFunction(rows, cols):
 outerList = []
 for i in range(rows):
 innerList = []
 for j in range(cols):
 if j % 2 == 0:
 innerList.append(i)
 else:
 innerList.append("wow")
 outerList.append(innerList)
 return outerList

Function calls:
	mysteryFunction(3,4)

mysteryFunction(5,3)

	

RECURSION INTRO
	Base Case

Recursive Case

	
Rewrite the following function using recursion (write on the right empty space):

	def double(lst):
 result = []
 for i in range(len(lst)):
 result.append(2 * lst[i])
 return result

double([1,2,3]) -> [2,4,6]
	

