
References and Memory
15-110 – Monday 09/22

Announcements

• Hw2 was due today -- how did it go?

• Exam1 is Wednesday 10/01
• Will cover content from Unit 1 (Check1, Hw1, Check2, Hw2)
• Exam problems are similar to homework problems (a mix of written and

programming), but all solved on paper.
• You have the whole lecture period (50 minutes) to take the exam.

• Exam logistics:
• Location – Lecture 1 (2pm) is in CUC McConomy. Lecture 2 (4pm) is in HOA 160.
• Open-note – you may bring up to five pages of paper notes
• Closed to collaboration – don't discuss the exam with others until feedback is

released
• What to bring - your notes, something to write with, and your andrewID card (we'll

check IDs at the door)

2

Announcements

• Exam Review Materials: https://www.cs.cmu.edu/~110/assessments.html

• Topics List: knowledge components that may be tested

• Notes Sheet: a starting place for conceptual review/creating your own notes

• Practice Problems: exam-similar problems generated by the TAs. Solutions will be
released next Monday

• May or may not be the same difficulty level as the exam

• Lecture Recordings: Zoom recordings of the Unit 1 lectures

• Lecture Review Session: next Monday. We'll go over topics based on your vote.

• Piazza poll: https://piazza.com/class/mdt8fk9mwyk30f/post/38

• TA Review Sessions: content & example review. Saturday 09/27 2-3pm in GHC 4401

• Other Practice Problems: for topic-specific practice problems and external resources,
see https://www.cs.cmu.edu/~110/practice.html

3

https://www.cs.cmu.edu/~110/assessments.html
https://piazza.com/class/mdt8fk9mwyk30f/post/38
https://piazza.com/class/mdt8fk9mwyk30f/post/38
https://www.cs.cmu.edu/~110/practice.html

Learning Goals

• Recognize whether two values have the same reference in memory

• Recognize the difference between destructive vs. non-destructive
functions/operations on mutable data types

• Use aliasing to write functions that destructively change lists

4

References and Memory

5

Computer Memory Holds Data

Recall from the Data Representation lecture that all data on your computer is represented as
bits (0s and 1s).

Your computer's memory is a very long sequence of bytes (8 bits), which are interpreted with
different abstractions to become different types. Each byte has its own address.

When you write a Python program, every variable you create is associated with a different
segment of memory. The way variables connect to memory becomes more complicated
when we use data structures.

31 35 31 31 30 49 65 63 96 79 48 61 72 67 61 72 65 74

0000 0004 0008 0012 0016

6

References are Memory Addresses

A reference (often called a pointer) is a specific address in memory. References
are used to connect variables to their values.

When we set a variable equal to a value, we keep the variable and value one step
apart. The variable only has access to a reference, which points to the value. If
Python goes to the reference's address, it can retrieve the value stored there.

s a b

Memory:

Variables:

Hello 4 3.5

s = "Hello"
a = 4
b = 3.5

7

Updating a Variable Changes the Reference

When we set a variable to a new value, Python makes a new data
value and reassigns the variable to reference the new value. It does
not change the old value in memory at all.

s

Hello Hello WorldMemory:

Variables:
s = "Hello"
s = s + " World"

8

Analogy: Lockers and Nametags

You can think of Python's memory as
a series of lockers, each with its own
number. The item inside a locker is
the data value it holds.

A variable is then a nametag sticker.
When you stick a nametag onto a
locker, it 'points to' the item in that
locker. If you move the nametag onto
a different locker, the original
locker's contents don't change.

9

Copying a Variable Copies the Reference

What happens when we set a new variable equal to an old one? We
don't need to create a new data value in a new memory address;
Python just copies the reference instead.

This is like taking a new nametag and putting it on the same locker as
another nametag.

s

Hello World

t

Memory:

Variables:
s = "Hello World"
t = s

10

Lists Take Up Adjacent Addresses

When we set a variable to a list (or another data structure), Python
sets aside a large place in memory for the data values it will hold.

By breaking up that large chunk of memory into parts, Python can
assign each value in the list a location, ordered sequentially.

x = [1, 2, 3] x

1 2 3Memory:

Variables:

Technically each index also holds
a reference to a new location, but
that's out of scope for this course

11

Analogy: A List is a Locker With Shelves

You can think of the list memory as
a single super-large locker (the
starting reference) broken up with
several shelves.

Each shelf can hold its own item
(data value) and has its own
reference.

This allows us to change memory in
new and interesting ways.

12

Mutable vs Immutable Values

13

List Values Can Be Changed

Because of how lists are stored in memory, the values in a list can be
changed directly without reassigning the variable.

We can change a list by setting a list index to a new value, like how we
would set a variable to a value.

lst = ["a", "b", "c"]

lst[1] = "foo"

lst # ["a", "foo", "c"]

14

Some List Methods Change the List

We can also modify a list directly, to add or remove elements from it, using some
list methods. These methods change the list without using variable assignment
at all.

lst = [1, 2, "a"]

lst.append("b") # adds the element to the end of the list

lst # [1, 2, "a", "b"]

Note that we do not set lst = lst.append; the list is changed in place. In fact,
the append method returns None, not a list.

15

Modifying Lists in Memory

How do these methods work? The large space set aside for the list values
allows Python to add and remove values from the list without running out of
room in memory. It's like having tons of empty shelves in the locker and
putting the item on one of them.

This makes it easy (and fast!) to locate and change a value based on its index.

x = [1, 2, 3]

x.append(7)

x[1] = 8
1 2 3 7

x

8Memory:

Variables:

16

Lists are Mutable; Strings are Immutable

We call data types that can be modified without reassignment this way
mutable. Data types that cannot be modified directly are called immutable.

All the other data types we've learned about so far – integers, floats,
Booleans, and strings – are immutable. In fact, if we try to set a string index to
a new character, we'll get an error. We have to set the entire variable equal to
a new value if we want to change the string.

s = "abc"

s[1] = "z" # TypeError

s = s[:1] + "z" + s[2:]

17

Copying Lists in Memory

We showed before that when we copy a variable into a new variable, the reference is
copied, not the value.

This is true for lists as well; an example is shown below.

x

1 2 3

yx = [1, 2, 3]
y = x

You do: what happens to the values in x and y if we add the line y.append(4) to
the end of this code snippet?

Memory:

Variables:

18

Reference-Sharing Lists Share Changes!

When a direct action is done on a list, that action affects the data values, not the variable. Any
lists that share a reference with the original list will see the same changes!

We call lists that share a reference this way aliased.

x

1 2 3

y

4Memory:

Variables:
x = [1, 2, 3]
y = x
y.append(4)

Aliases are like nicknames. x and y aren't actually different
values; they're two references to the same value.

19

Copying Variables vs. Copying Values

Two variables won't be aliased just because they contain the same values.
Their references need to point to the same place for them to be aliased.

In the following example, the lack of a reference copy keeps the list z from
being aliased to x and y.

x

1 2 3

y

1 2 3

z

4

x = [1, 2, 3]
y = x
z = [1, 2, 3]
x.append(4) Memory:

Variables:

20

Break an Alias with List Concatenation

If you have two variables that are aliased and you don't want them to be aliased, you
need to 'break' the alias between them. This is done by setting one of the variables
equal to a new data value with the same values as the original list.

The easiest way to do this is to concatenate the empty list to the original list. Python
will then create an entirely new list in memory with the same values as the old one.

a = ["A", "B", "C"]

b = a # a and b are aliased

a = a + [] # a now has a new reference, but the same values

Why does this work? Variable assignment with list concatenation is non-destructive.

21

Destructive vs. Non-destructive

22

Two Ways of Modifying Lists

Whenever we want to modify a list (by changing a value, adding a value,
or removing a value), we can choose to do so destructively or non-
destructively.

Destructive approaches change the data values without changing the
variable reference. Any aliases of the variable will see the change as well,
since they refer to the same list.

Non-destructive approaches make a new list, giving it a new reference.
This 'breaks' the alias and doesn't change the previously-aliased variables.

23

Destructive Methods are Efficient

Why would we ever want to use a destructive approach instead of a simpler non-
destructive approach?

Destructive approaches are more efficient. Instead of needing to copy all the
values into a new place in memory, you only change a small part of the existing
memory. This saves time and space in memory.

Real-life example: maybe you use a list to track all the patients in a hospital. The
list is quite long, and new patients are constantly being admitted (added) and
discharged (removed). Modifying the list destructively is much faster than
rewriting it every time a change is made!

24

Two Ways to Add Values

How do we add a value to a list destructively? Use destructive methods - append, insert, or extend.

lst = ["A", "B", "C"]

lst.append("E") # add value to the end

lst.insert(0, "foo") # inserts 2nd param into 1st param index

lst.extend(["F", "G"]) # adds multiple elements

How do we add a value to a list non-destructively? Use variable assignment with list concatenation.

lst = ["A", "B", "C"]

lst = lst + ["E"] # note that "E" needs to be in its own list

warning: 'lst +=' and 'lst = lst +' behave differently!

lst = lst[:len(lst)//2] + ["F"] + lst[len(lst)//2:]

25

Two Ways to Remove Values

How do we remove a value from a list destructively? Use destructive methods - remove
or pop.

lst = ["A", "B", "C"]

lst.remove("A") # removes the given element from the list once

lst.pop(1) # removes the element at given index from the list

How do we remove a value from a list non-destructively? Use variable assignment with
list slicing.

lst = ["A", "B", "C"]

lst = lst[1:]

lst = lst[:len(lst)-1]

26

Other Destructive Methods

There are a few other destructive methods that may come in handy:

lst = [4, 1, 9, 2]

lst.sort() # sorts the list destructively

import random

random.shuffle(lst) # mixes the elements up destructively

And of course, list index assignment is also destructive

lst[3] = 42 # changes the element at index 3 destructively

27

[if time] Activity: Which Lists are Aliased?

At the end of this set of operations, which lists will be aliased? What values
will each variable hold?

a = [1, 2, "x", "y"]
b = a
c = [1, 2, "x", "y"]
d = c
a.pop(2)
b = b + ["woah"]
c[0] = 42
d.insert(3, "yowza")

28

Writing Destructive Functions

29

Function Arguments/Parameters are Aliased

When you call a function with a mutable value as one of the arguments, that
argument is aliased to the function's parameter variable.

This means that we can write our own functions that behave destructively,
changing the data values in the given list directly instead of making a new list.

def foo(lst):
 lst[1] = "!"

x = [1, 2, 3]
print(foo(x))
print(x) # [1, "!", 3]

x

1 2 3

lst

Memory:

Variables:

!# None

30

Destructive Functions Use Mutable Methods

When writing a destructive function, use index assignment and the mutable methods
(append, insert, extend, pop, and remove) on the parameter list to change it as
needed. For example, the following code destructively doubles all the values in the given
list of integers.

Note that the function need not return lst because the parameter lst and the argument
x refer to the same value. We usually have destructive functions return None as an
indicator that they're destructive.

def destructiveDouble(lst):
 for i in range(len(lst)):
 lst[i] = lst[i] * 2 # index assignment is destructive!

x = [1, 2, 3]
destructiveDouble(x)
print(x)

31

Non-Destructive Functions Make New Lists

If you want to make a function that is not destructive, you should instead set up a new list and fill it with
the appropriate values. To be non-destructive, the parameter must not be changed.

The following code non-destructively creates a new list of all the doubles of values in the original list.
This function does need to return the result, as the parameter is not changed. After the call to the
function, the variable x will not have changed; y refers to the new list with all the values doubled.

def nonDestructiveDouble(lst):
 result = []
 for i in range(len(lst)):
 result.append(lst[i] * 2) # append can be used on result, but not lst
 return result

x = [1, 2, 3]
y = nonDestructiveDouble(x)
print(x, y)

32

Learning Goals

• Recognize whether two values have the same reference in memory

• Recognize the difference between destructive vs. non-destructive
functions/operations on mutable data types

• Use aliasing to write functions that destructively change lists

33

Sidebar: Destructive Looping

34

Looping with List Destruction

Looping over a list while changing it destructively can cause some odd
side effects because of how loop control variables are managed.

You'll often want to do destructive looping, so here are two tips for
how to manage it.

35

for vs. while

It is a very bad idea to destructively add
or remove elements in a list while looping
over it with a for loop.

This will lead to unexpected and bad
behavior. Why? The range is only
calculated once.

lst = ["a", "a", "c", "d", "e"]
for i in range(len(lst)):
 if lst[i] == "a" or \
 lst[i] == "e":
 lst.pop(i)

Instead, use a while loop if you're planning to
destructively change the list length inside a
loop.

The list length is reevaluated when the while
condition is checked each iteration.

lst = ["a", "a", "c", "d", "e"]
i = 0
while i < len(lst):
 if lst[i] == "a" or \
 lst[i] == "e":
 lst.pop(i)
 else:
 i = i + 1

36

break to exit early

What if you want to destructively remove exactly one element from a list, then exit the loop
immediately before you remove any others?

It's possible to design a loop control variable to do this, but it's often easier to use the break
statement instead. As soon as the code reaches a break, it immediately exits the loop. (If loops
are nested, it only exits the innermost loop).

lst = ["a", "a", "c", "d", "e"]

for i in range(len(lst)):

 if lst[i] == "a":

 lst.pop(i)

 break # exits immediately, only removes one "a"

37

	Slide 1: References and Memory
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Learning Goals
	Slide 5: References and Memory
	Slide 6: Computer Memory Holds Data
	Slide 7: References are Memory Addresses
	Slide 8: Updating a Variable Changes the Reference
	Slide 9: Analogy: Lockers and Nametags
	Slide 10: Copying a Variable Copies the Reference
	Slide 11: Lists Take Up Adjacent Addresses
	Slide 12: Analogy: A List is a Locker With Shelves
	Slide 13: Mutable vs Immutable Values
	Slide 14: List Values Can Be Changed
	Slide 15: Some List Methods Change the List
	Slide 16: Modifying Lists in Memory
	Slide 17: Lists are Mutable; Strings are Immutable
	Slide 18: Copying Lists in Memory
	Slide 19: Reference-Sharing Lists Share Changes!
	Slide 20: Copying Variables vs. Copying Values
	Slide 21: Break an Alias with List Concatenation
	Slide 22: Destructive vs. Non-destructive
	Slide 23: Two Ways of Modifying Lists
	Slide 24: Destructive Methods are Efficient
	Slide 25: Two Ways to Add Values
	Slide 26: Two Ways to Remove Values
	Slide 27: Other Destructive Methods
	Slide 28: [if time] Activity: Which Lists are Aliased?
	Slide 29: Writing Destructive Functions
	Slide 30: Function Arguments/Parameters are Aliased
	Slide 31: Destructive Functions Use Mutable Methods
	Slide 32: Non-Destructive Functions Make New Lists
	Slide 33: Learning Goals
	Slide 34: Sidebar: Destructive Looping
	Slide 35: Looping with List Destruction
	Slide 36: for vs. while
	Slide 37: break to exit early

