Lists and Methods

15-110 — Friday 09/19

Announcements

* Hw2 due Monday at noon

* Quizlet2 grades released, median 6/10. Make sure you're practicing
reading code, not just running it to see the result.

81
37 36 35

-] --

0 1 2 3 4 5 6 7 8 9 10

Qu | / | et 2 P ract | ce For the function call fun1(x, 5)...

§ Function argument(s)?

def funl(w, y):
Z =W+ X+Yy
print("x:", Xx)
print("y:", y) Function returned value(s)?
print("z:", z)
return z

print("110")
z = funl(x, 5) + 1
print("Final") What will be printed?

Reminder: Use Appropriate Help for Homework

As we keep making progress, we will work with more complex topics in the assignments. You may
find some of the problems difficult and may get stuck while working.

When you need help, do not use Generative Al (ChatGPT, Copilot, etc) to find a solution. This
entirely skips the learning process and is also an academic integrity violation.

Instead, use the course resources! Piazza and Office Hours (TA and Instructor) are great for getting
homework help. Collaborate with fellow students. If you need to, submit partial work, then use the
revision deadline to fix your work once you get feedback.

Submitting work that you created yourself will always be best for your learning!

* Read and write code using 1D and 2D lists

» Use string/list methods to call functions directly on values

Unit 2 Overview

Data Structures: things we use while programming to organize
multiple pieces of data in different ways.

Efficiency: the study of how to design algorithms that run quickly, by
minimizing the number of actions taken.

These concepts are connected, as we often design data structures so
that specific tasks have efficient algorithmes.

Data Structures: lists, dictionaries, trees, graphs

Efficiency: search algorithms, Big-O, tractability

LIsts

A list is a data structure that holds an ordered collection of data
values.

Sign In Here
0. Elena

1. Max

]] 2. Eduardo
Example: a sign-in sheet for a class. 3. lyla

4. Ayaan

Lists make it possible for us to assemble and analyze a collection of
data using only one variable.

List Syntax

We use square brackets to set up a list in Python.

a =[]] # empty list

G
|

. "uno", "dos", "tres"] # list with three strings

c = [1, "dance", 4.5] # lists can have mixed types

11

Core List/String Operations

Lists share most of their core operations with strings. You can concatenate lists together, just like

strings.

[1, 2 1+ [3, 4] # concatenation - [1, 2, 3, 4]

And you can repeat lists an integer number of times, again like strings.
[llall, Ilbll] * 2 # r\epetition _ [llallJ llbllJ llall, llbll]

We learned about indexing, slicing, and membership checks last time- those work on lists too.

lSt — [llall) llbll’ "C") lldll]
lst[1] # indexing - "b"
1st[2:] # slicing - ["c", "d"]

c" in 1lst # membership - True

12

Sidebar: Built-in List Functions

There are some new built-in functions we'll want to use with lists.

len(lst) # length of a list

min(lst) # smallest element of the list
max(lst) # biggest element of the list
sum(lst) # total sum of elements in the list

random.choice(lst) # picks a random element from the
list

13

Activity: Evaluate the Code

You do: what will each of the following code snippets evaluate to?
[5] *3
[Ilall, Ilbll, "C"][l]

min([5, 1, 8, 2])

14

Looping Over Lists

Looping over lists works the same way as with strings. We can use a
for loop over the indexes of the list to access each item. For example,
the following loop sums all the values in prices.

total = ©

for 1 in range(len(prices)):
total = total + prices[i]

print(total)

15

Example: findMax(nums)

Let's write a function that finds the maximum value in a list of integers.

def findMax(nums):
biggest = nums[0@] # why not ©? Negative numbers!
for i in range(len(nums)):
if nums[i] > biggest:
biggest = nums[i]
return biggest

We'll often use this algorithmic structure to find the biggest/best item in a
structure.

16

2D Lists

2D Lists are Lists of Lists

We often need to work with data that is two-dimensional, such as the
coordinates on a grid, values in a spreadsheet, or pixels on a screen. We
can store this type of data in a 2D list, which is a list where the items are
themselves lists.

] OE w-6 ~

Insert Pagelayout Formulas Data 3 e 1 Share ~
ﬁ:{w Govoni @y <12+ As A Sl Sewen Gonera © B %fﬂ"‘fm' Ay

Pt romat | LD U (i S A (= = = 6= 9z Elvemescentmr FEr % 3 (430 Crpid s Bp || G Ef R & car- sons

Al H fi species .

A B C D E F G H]

1 |species |island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

2 Adelie Torgersen 391 187 181 3750 male 2007

3 Adelie Torgersen 39.5 17.4 186 3800 female 2007

4 Adelie Torgersen 40.3 18 195 3250 female 2007

5 Adelie Torgersen NA NA NA NA NA 2007

6 Adelie Torgersen 36.7 19.3 193 3450 female 2007

7 Adelie Torgersen 393 20.6 190 3650 male 2007

8 Adelie Torgersen 38.9 17.8 181 3625 female 2007

9 Adelie Torgersen 39.2 19.6 195 4675 male 2007

10 Adelie Torgersen 34.1 18.1 193 3475 NA 2007

11 Adelie Torgersen 42 202 190 4250 NA 2007

12 Adelie Torgersen 378 17.1 186 3300 NA 2007

13 Adelie Torgersen 37.8 17.3 180 3700 NA 2007

14 Adelie Torgersen 41.1 17.6 182 3200 female 2007

15 Adelie Torgersen 38.6 212 191 3800 male 2007

16 Adelie Torgersen 346 211 198 4400 male 2007

17 Adelie Torgersen 36.6 178 185 3700 female 2007

18 Adelie Torgersen 38.7 19 195 3450 female 2007

(Torgersen Island Biscoe Island Dream Island]+
Ready [l B] - e——— e 200%

18

The table below shows cities in
Pennsylvania, the counties
they’re in, and their population.

City County Population
Pittsburgh |Allegheny 303,255
Philadelphia |Philadelphia |1,567,258
Allentown |Lehigh 124,880
Erie Erie 92,957
Scranton Lackawanna 75,805

In Python, we
could represent
this using the 2D
list to the right.
Each of the five
elements of the list
is itself a list!

Population List

0.

. "Pittsburgh”
. "Allegheny”
. 303255

. "Philadelphia”
. "Philadelphia”

. 1567258

."Allentown"
. "Lehigh"
. 124880

."Erie"
."Erie"
. 92957

0
1
2

. "Scranton"
. "Lackawanna"
. 75805

19

Syntax of 2D Lists

Setting up a 2D list is no different than setting up a 1D list; each inner list is one
data value.

cities = [["Pittsburgh"”, "Allegheny", 303255],
"Philadelphia", "Philadelphia", 1567258],

:"Allentown": "Lehigh", 12488@]: This is across multiple lines
-"EI"iE", "Er*ie", 92957]’ but treated as one line

o v . because each part ends
' "Scranton”, "Lackawanna", 75805] | withacomma.

The length of a 2D list is the number of lists in the outer list.
len(cities) # 5

20

cities = [["Pittsburgh", "Allegheny", 303255],
("Philadelphia"”, "Philadelphia", 1567258],

|ndexing of 2D Lists ["Allentown", “"Lehigh", 124880],

["Erie", "Erie", 92957],
["Scranton”, "Lackawanna", 75805]]
When indexing into a 2D list, the first square brackets index

into a row and the second index into a column.
cities # the list of lists

cities[2] # ["Allentown"”, "Lehigh", 124880]
1 J

cities[2][1] # "Lehigh” —

21

cities = [["Pittsburgh", "Allegheny", 303255],
"Philadelphia”, "Philadelphia", 1567258],
Loopi Ng Over 2D Lists ["Allentown", “"Lehigh", 1248801,

"Erie", "Erie", 92957],
["Scranton", "Lackawanna", 75805]]
We can loop over a 2D list the same way we loop over any other list.

Indexing into a list once will produce an inner list. We'll need to index a
second time to get a value.

def getCounty(outerList, cityName):
for 1 in range(len(outerList)):
innerList = outerList[i]
if innerList[@] == cityName:
return innerlList[1]
return None # city not found

22

Looping Over All 2D List Elements

When you loop over a 2D list and want to access every element, you need to use nested for
loops. Often, the outer loop iterates over the indexes of the outer list (rows) and the inner loop
iterates over the indexes of the inner list (columns).

gameBoard = [["X", " ", "O0"], ["™ ", "xX", " "], ["™ ", "™ ™", "O"]]

for row in range(len(gameBoard)): # each row is a list
boardString = ""

for col in range(len(gameBoard[row])): # each col is a string
boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

23

Activity: getTotalPopulation(cities)

Fill in the blanks for the function getTotalPopulation(cities) that takes the city-
information 2D list from before and finds the total population of all cities in the list.

def getTotalPopulation(cities):

= 0
: . cities = [["Pittsburgh", "Allegheny", 303255],
for row in r‘ange() ["Philadelphia", "Philadelphia", 1567258],
pop = ["Allentown", "Lehigh", 124880],
["Erie", "Erie", 92957],
total = ["Scranton", "Lackawanna", 75805]]

return total

Hint: note that the population is in the third column. Which index corresponds to that?

24

Methods

Most string and list built-in functions (and data structure functions in general) work
differently from other built-in functions. Instead of writing:

isdigit(s)

write:
s.isdigit()

This tells Python to call the built-in string function 1sdigit on the string s. It will
then return a result normally. We call this kind of function a method, because it
belongs to a data structure.

This is how our Tkinter methods work too! create rectangleis called on
canvas, which is a data structure.

26

There is a whole library of built-in string and list methods that have already been
written; you can find them at

docs.python.org/3/library/stdtypes.html#tstring-methods
and
docs.python.org/3/tutorial/datastructures.html##tmore-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be
hard to memorize all of them. Instead, use the Python documentation to look for
the name of a function that you know probably exists.

If you can remember which basic actions have already been written, you can
always look up the name and parameters when you need them.

27

https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Some Methods Return Information

Some methods return information about the s = "hello”

value. 1st = [10, 20, 30, 40, 50]
s.isdigit(),s.islower (), and s.isdigit() # False
s.isupper() return True if the string is all- s.islower() # True

digits, all-lowercase, or all-uppercase, respectively. "OK".isupper() # True

s.count(x) and 1st.count(x) return the s.count("1") # 2
number of times the subpart x occursin s or 1st. 1st.count(20) # 1

s.index(x) and 1lst.index(x) return the s.index("o") # 4

index of the subpart x in s or 1st, or raise an
) - |
error if it doesn't occur in the value. 1st.index(5) # ValueError!

28

Example: Checking a String

As an example of how to use methods, let's write a function that
returns whether or not a string holds a capitalized name. The first

letter of the name must be uppercase and the rest must be
lowercase.

def formalName(s):

return s[0].isupper() and s[1l:].islower()

29

Some Methods Create New Values

Other string methods return a new value s = "Hello"
based on the original.
s.lower()ands.upper()returnanew 5 - ¢ lower() # a = "hello"

string that is like the original, but all-

lowercase or all-uppercase, respectively. b = s.upper() # b = "HELLO

s.replace(a, b) returnsa new string
where all instances of the string a have c = s.replace("1", "y")# c = "Heyyo
been replaced with the string b.

s.strip() returns a new string with d =" Hi there ".strip()# d = "Hi there"
excess whitespace (spaces, tabs, newlines)

at the front and back removed.

30

Example: Making New Strings

We can use these new methods to make a silly password-generating function.

def makePassword(phrase):
phrase2 = phrase.lower()

phrase3 = phrase2.replace("a", "@").replace("o", "0")
return phrase3

31

Some Methods Change Data Types

Finally, some methods let you convert between
strings and lists as needed.

s.split(c) splits up a string into a list of e = "one,two,three".split(",")
strings based on the separator character, c. # e = ["one", "two", "three"]
c.join(1lst) joins a list of strings together f = "-".join(["ab", "cd", "ef"])
into a single string, with the string c between # f = "ab-cd-ef"

each pair.

32

You do: write the function getFirstName (fullName), which takes
a string holding a full name (in the format "Farnam Jahanian")
and returns just the first name. You can assume the first name will
either be one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate
the first name from the rest of the string.

33

* Read and write code using 1D and 2D lists

* Use list methods to change lists without variable assignment

	Slide 1: Lists and Methods
	Slide 2: Announcements
	Slide 3: Quizlet2 Practice
	Slide 4: Reminder: Use Appropriate Help for Homework
	Slide 5: Learning Goals
	Slide 6: Unit 2 Overview
	Slide 7: Unit 2: Data Structures and Efficiency
	Slide 8: Unit 2 Topic Breakdown
	Slide 9: Lists
	Slide 10: Lists are Containers for Data
	Slide 11: List Syntax
	Slide 12: Core List/String Operations
	Slide 13: Sidebar: Built-in List Functions
	Slide 14: Activity: Evaluate the Code
	Slide 15: Looping Over Lists
	Slide 16: Example: findMax(nums)
	Slide 17: 2D Lists
	Slide 18: 2D Lists are Lists of Lists
	Slide 19: 2D List Example
	Slide 20: Syntax of 2D Lists
	Slide 21: Indexing of 2D Lists
	Slide 22: Looping Over 2D Lists
	Slide 23: Looping Over All 2D List Elements
	Slide 24: Activity: getTotalPopulation(cities)
	Slide 25: Methods
	Slide 26: Methods Are Called Differently
	Slide 27: Don't Memorize- Use the API!
	Slide 28: Some Methods Return Information
	Slide 29: Example: Checking a String
	Slide 30: Some Methods Create New Values
	Slide 31: Example: Making New Strings
	Slide 32: Some Methods Change Data Types
	Slide 33: [if time] Activity: getFirstName(fullName)
	Slide 34: Learning Goals

