
Hw1 – Awesome Fences!

Hw1 – Awesome Fences!

While Loops
15-110 – Friday 09/12

Announcements

• Hw1 feedback released
• Make sure to view programming feedback!
• Tutorial on website

• Check2 due Monday 09/15 at noon

• Check1/Hw1 revision deadline: Tuesday 09/16 noon

− If you want to update your submission based on feedback, just make the changes to
your solution and resubmit (applies to exercises too!)

− TAs will regrade within a week

− Note that revision submissions are capped at 90 points – don't resubmit if you already
scored a 90 or above. (Still look at your feedback, though!)

4

Announcements

• Quizlet1 grades released

• Past quizlet questions and answers are posted on the Assessments page of the
course website

5

Learning Goals

• Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update actions for
loop control variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

6

Repeating Actions is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

7

Loops Repeat Actions Automatically

A loop is a control structure that lets us repeat actions so
that we don't need to write out similar code over and
over again.

Loops are generally most powerful if we can find a
pattern between the repeated items. Noticing patterns
lets us separate out the parts of the action that are the
same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the
same is the action of printing. The part that is different is
the number that is printed.

8

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

same

different

While Loops

9

While Loops Repeat While a Condition is True

A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <booleanExpression>:
 <loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True, it
runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips the
loop body the same way an if statement would skip its body.

10

Conditions Must Eventually Become False

Unlike if statements, the condition in a while loop must eventually become False. If this
doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a variable as part
of the Boolean expression. We can then change the variable inside the while loop. For
example, the variable i changes in the loop below.

i = 1

while i < 5:

 print(i)

 i = i + 1

print("done")

11

Infinite Loops Run Forever

What happens if we don't ensure that the condition eventually becomes False? The
while loop will just keep looping forever! This is called an infinite loop.

i = 1

while i > 0:

 print(i)

 i = i + 1

If you get stuck in an infinite loop, press the button to make the program stop.
Then investigate your program to figure out why the variable never makes the condition
False. Printing out the variable that changes can help pinpoint the issue.

12

while Loop Flow Chart

Unlike an if statement, a while
loop flow chart needs to include a
transition from the while loop's
body back to itself.

i = 1

while i < 5:

 print(i)

 i = i + 1

print("done")

i = 1

if i < 5

print(i)

i = i + 1

print("done")

True False

loop body

13

You Do: Trace the Program

You do: if we slightly change the code from the previous program,
what happens to the program?

i = 1

while i < 5:

 i = i + 1 # moved up one line

 print(i)

print("done")

14

Loop Control Variables

15

Use Loop Control Variables to Design Algorithms

Now that we know the basics of how loops work, we can write while
loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part will be created by the
loop control variable, which is updated in the loop body.

To use this variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated
for the loop to work correctly.

16

Loop Control Variables - Example

In our print 1-to-10 example, our variable is the number being printed. We want to start
the variable at 1 and continue while the variable is less than or equal to 10. Set num = 1
at the beginning of the loop and continue looping while num <= 10. The loop ends
when num is 11.

Each printed number is one larger from the previous, so the update should set the
variable to the next number (num = num + 1) in each iteration.

num = 1

while num <= 10:

 print(num)

 num = num + 1

17

Loop Control Variables – Counting Backwards

How would we change the program if we wanted to count backwards instead? The loop
control variable is the same (the number being printed), but its components change.

Set num = 10 at the beginning of the loop and continue looping while num >= 1. The
loop ends when num is 0.

Each printed number is one smaller from the previous, so the update should set the
variable to the next number (num = num - 1) in each iteration.

num = 10

while num >= 1:

 print(num)

 num = num - 1
18

Activity: Print Even Numbers

You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

19

Loops in Algorithms

20

Implement Algorithms by Changing Loop Body

Suppose we want to add the numbers from
1 to 10.

We need to keep track of two different
numbers:

• the current number we're adding
• the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0

num = 1

while num <= 10:

 result = result + num

 num = num + 1

print(result)

Which is the loop control variable?

21

Tracing Loops

Sometimes it gets difficult to
understand what a program is doing
when that program uses loops. It can be
helpful to manually trace through the
values in the variables at each step of
the code, including each iteration of the
loop.

result = 0
num = 1
while num <= 7:
 result = result + num
 num = num + 1
print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

post-loop 28 8

22

Update Order

When updating multiple variables in a
loop, order matters. If we update num
before we update result, it changes
the value held in result.

result = 0
num = 1
while num <= 7:
 num = num + 1
 result = result + num
print(result)

Note: Python checks the condition only
at the start of the loop; it doesn't exit
the loop as soon as num becomes 8.

step result num

pre-loop 0 1

iteration 1 2 2

iteration 2 5 3

iteration 3 9 4

iteration 4 14 5

iteration 5 20 6

iteration 6 27 7

iteration 7 35 8

post-loop 35 8

23

Nesting Conditionals in while Loops

We showed previously how we can nest conditionals in
other conditionals or function definitions. We can do the
same thing with while loops!

For example, let's make ascii art. Write code to produce the
following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

row = 0
while row < 5:
 if row % 2 == 0:
 print("x-x-x")
 else:
 print("-o-o-")
 row = row + 1

24

Nesting while Loops in Functions

We can also nest loops inside of function
definitions.

If we return inside a loop, Python
immediately exits the function- no further
iterations will run.

For example, if we want to check whether a
multiple of factor occurs within a certain
range [start, end], we can return True as
soon as we find a multiple (inside the loop), or
False if we never find a multiple (outside the
loop).

Normally you return in a conditional nested
inside the loop, not the loop body itself. If you
return directly in the loop, it will exit on the
first iteration!

def multipleInRange(start, end, factor):

 i = start

 while i <= end:

 print(i) # shows loop ends early

 if i % factor == 0:

 return True

 i = i + 1

 return False

25

Coding with Multiple Data Points

Now that we have loops, we can start writing algorithms to solve real-
world problems. For example, we often want to analyze multiple data
points while writing code.

Loops make it possible for us to repeat an action multiple times- that
should make it possible for us to get multiple data points. But how can we
receive that data?

For now, we'll use the input built-in function to repeatedly ask the user
for data. Later we'll learn about a new data type that can store multiple
values in one place.

26

Looping with input

If we call input inside the loop
body, we can get multiple inputs
from the user and process them
like a data stream.

We'll need to give the user a way
to signal that they're done
entering numbers. This can by
done with a special input, like the
string 'q'.

For example, this code sums the
numbers entered by the user
until they signal an end to the
numbers.

result = 0

value = input("Enter a number, or q to quit:")

while value != "q":

 num = int(value)

 result = result + num

 value = input("Enter a number, or q to quit:")

print("Total sum:", result)

Note: our loop control variable here is value. It
starts as a user input, is updated by asking for new
input, and continues looping while it is not "q".

27

Learning Goals

• Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update actions for
loop control variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

28

Extra Slides:
Advanced Loops in Algorithms

This content will not be tested, but is interesting to know!

29

Loop Control Variables – Advanced Example

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes you
need to think through an example to make it
clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human, turning
them into a zombie. If we start with just one
zombie, how long does it take for the whole world
(7.5 billion people) to turn into zombies?

We'll need to track and update two variables- one
for the number of zombies, one for the number of
days passed.

Loop control variable: # of zombies
Start value: 1 zombie
Continuing condition: while the number of zombies
is less than the population
Update action: double the number of zombies every
day

zombieCount = 1

population = 7.5 * 10**9

daysPassed = 0

while zombieCount < population:

 daysPassed = daysPassed + 1

 zombieCount = zombieCount * 2

print(daysPassed)

30

Loop Control Variables – Another Example

Example: how would you count the number of
digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1

or

a*102 + b*101 + c*100

Check each power of 10 until one is bigger than
the number. A separate variable can track the
actual number of digits counted.

Loop control variable: which power of 10 is being
checked
Start value: 1 (100)
Continuing condition: while the power of 10 isn't
greater than the number
Update action: multiply the power by 10

num = 2021

power = 1

digits = 0

while power < num:

digits = digits + 1

power = power * 10

print(digits)
31

Loop Control Variables – Another Example

Another answer: instead of comparing a power
of 10 to the number, change the number itself.

For example, to count the digits in abc, change:

abc ->

ab ->

a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet 0 (no digits)
Update action: divide the number by 10

num = 2021

digits = 0

while num > 0:

digits = digits + 1

num = num // 10

print(digits)

32

	Slide 1: Hw1 – Awesome Fences!
	Slide 2: Hw1 – Awesome Fences!
	Slide 3: While Loops
	Slide 4: Announcements
	Slide 5: Announcements
	Slide 6: Learning Goals
	Slide 7: Repeating Actions is Annoying
	Slide 8: Loops Repeat Actions Automatically
	Slide 9: While Loops
	Slide 10: While Loops Repeat While a Condition is True
	Slide 11: Conditions Must Eventually Become False
	Slide 12: Infinite Loops Run Forever
	Slide 13: while Loop Flow Chart
	Slide 14: You Do: Trace the Program
	Slide 15: Loop Control Variables
	Slide 16: Use Loop Control Variables to Design Algorithms
	Slide 17: Loop Control Variables - Example
	Slide 18: Loop Control Variables – Counting Backwards
	Slide 19: Activity: Print Even Numbers
	Slide 20: Loops in Algorithms
	Slide 21: Implement Algorithms by Changing Loop Body
	Slide 22: Tracing Loops
	Slide 23: Update Order
	Slide 24: Nesting Conditionals in while Loops
	Slide 25: Nesting while Loops in Functions
	Slide 26: Coding with Multiple Data Points
	Slide 27: Looping with input
	Slide 28: Learning Goals
	Slide 29: Extra Slides: Advanced Loops in Algorithms
	Slide 30: Loop Control Variables – Advanced Example
	Slide 31: Loop Control Variables – Another Example
	Slide 32: Loop Control Variables – Another Example

