
String Indexing, Slicing, and 
Looping

15-110 – Wednesday 02/08



Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

2



How Can We Process Text Data?

So far, we've mainly written programs that deal with numbers.

We can use strings in programs, but there isn't much we can do with 
them so far. But real text data is modular – you can break it up into 
sentences, words, letters.

How can we write code that treats text like a set of data instead of a 
single item?

3



Indexing and Slicing

4



Strings are Made of Characters

Unlike numbers and Booleans, Python can break strings down into individual 
parts (characters). How can we access a specific character in a string?

First, we need to determine what each character's position is. Python assigns 
integer positions in order, starting with 0.

S T E L L A

0 1 2 3 4 5
5

STELLA



Getting Characters By Location

If we know a character's position, Python will let us access that 
character directly from the string. Use square brackets with the integer 
position in between to get the character. This is called indexing.

s = "STELLA"

c = s[2] # "E"

We can get the number of characters in a string with the built-in 
function len(s). This function will prove useful soon.

6



Common String Indexes

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?

s[len(s)] # runtime error

7



Activity: Guess the Index

Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

8



String Slicing Produces a Substring

We can also get a whole substring from a string by specifying a slice.

Slices are exactly like ranges – they can have a start, an end, and a step. 
But slices are represented as numbers inside of square brackets, 
separated by colons.

s = "abcde"
print(s[2:len(s):1])   # prints "cde"
print(s[0:len(s)-1:1]) # prints "abcd"
print(s[0:len(s):2])   # prints "ace"

9



String Slicing Shorthand

Like with range, we don't always need to specify values for the start, end, and 
step. These three parts have default values: 0 for start, len(value) for end, and 1
for step. But the syntax to use default values looks a little different.

s[::] and s[:] are both the string itself, unchanged (we can remove the second 
colon when the step is 1)

s[1:] is the string without the first character (start is 1)

s[:len(s)-1] is the string without the last character (end is len(s)-1)

s[::3] is every third character of the string (step is 3)

10



Activity: Find the Slice

Given the string "abcdefghij", what slice would we need to get the 
string "cfi"?

11



Example: Extract Information from Text

Let's assume we have a variable text that holds a greeting:       
"Hello NAME". We want to extract just the name from the text.

We can use string slicing! Start the slice at the location of the first 
character of the name.

text = "Hello Jonathan"

name = text[len("Hello "):] # "Jonathan"

12



More String Things

13



Special Characters

Most characters that appear in text can be typed directly into strings, but 
some are more difficult to work with. These include the enter character 
(newline) and the tab character (tab). To represent these characters in a 
string, we'll use a shorthand:

"ABC\nDEF" # '\n' = newline, or pressing enter/return

"ABC\tDEF" # '\t' = tab

The \ character is a special character that indicates an escape sequence. It is 
modified by the letter that follows it. These two symbols are treated as a 
single character by the interpreter.

14



Triple Quotes

Early in the semester we showed how you can use triple-quotes to create 
multi-line comments. You can also use them to create multi-line strings, and 
you can type special characters into those strings directly, without using 
escape sequences!

s = """This Autumn midnight
Orion's at my window
shouting for his dog."""

is equivalent to:

s = "This Autumn midnight\nOrion's at my window\nshouting for his dog."

15

Haiku by Carol A. Coiffait



Membership Checks

We can now introduce a new operator called in (and its opposite not 
in) to see whether an individual character or substring occurs in a 
string. This returns a Boolean. This is very handy when you want to 
check whether something occurs in a piece of text!

"e" in "Hello" # True

"W" in "CRAZY" # False

"seven" in "Four score and seven years ago" # True

"wow" not in "That's impressive" # True

16



ASCII Functions

Finally, there are two built-in functions that will let us find the ASCII 
values of characters when we need them. ord(c) lets you find the 
ASCII value of a given one-character string, and chr(x) returns the 
character associated with the given ASCII value.

ord("K") # 75

chr(76) # "L"

17



Looping with Strings

18



Looping Over Strings

Now that we have string indexes, we can loop over the characters in a 
string by visiting each index in the string in order.

If the string is s, the string's first index is 0 and the last index is   
len(s)-1. Use range(len(s)) to visit all possible indexes.

s = "Hello World"

for i in range(len(s)):

print(i, s[i])

19



Algorithmic Thinking with Strings

If you need to solve a problem that involves doing something with every character 
in a string, use a for loop over that string.

For example – how do we make a version of a string that doesn't include any 
spaces? Make a new string by checking each character and only add each one if it 
isn't a space.

s = "Wow! This is so exciting!"

result = ""

for i in range(len(s)):
if s[i] != " ": # note the space between the quotes!

result = result + s[i]

print(result) # "Wow!Thisissoexciting!"
20



For Loop Indexes are Flexible

For loops may seem straightforward when the loop control variable refers to each index in the 
string. But we can get more creative with what the variable is used for when necessary!

For example – how would you check whether a string is a palindrome (the same front-to-back as it 
is back-to-front)? Use the variable as the front index and the back index offset.

def isPalindrome(s):

for i in range(len(s)):

front = s[i]

back = s[len(s) - 1 - i]

if front != back:

return False

return True

21



Activity: Coding with Strings

You might be able to recognize a person by the types of punctuation they use 
in text messages. Maybe one friend loves exclamation points while another 
friend never uses them.

You do: write a function getPunctuationFrequency(text, punc) that 
takes a text message (a string) and a punctuation character (another string) 
and returns the frequency of how often that character appears in the text 
compared to other characters - the number of times it appears over the total 
number of characters.

For example, getPunctuationFrequency("That's so exciting!! 
Good for you man!", "!") would return ~0.079, because exclamation 
marks form 3/38 = ~0.079 as a ratio of the characters in the text.

22



[if time] Try it with real data!

We can try running our analysis function on real texts!

Websites like Project Gutenberg make the text of books available online for free. 
You can copy that text into a string, then run that string through the function.

Running the function through some popular classic fiction and trying out a few 
different types of punctuation already gleans interesting results. For example, the 
character . takes up 1.15% of text in The Great Gatsby compared to 0.82% in Pride 
and Prejudice; on the other hand, the character ; takes up only 0.03% of text in The 
Great Gatsby compared to 0.21% of text in Pride and Prejudice.

Combining these frequencies together can give us an interesting map of the writing 
styles of different authors!

23

https://www.gutenberg.org/


Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

24



Sidebar: 
When do we use len(s) vs. len(s)-1?
It can be hard to tell when to use len(s) vs. len(s)-1. What do these two 
expressions really mean?

len(s) is the length of the string, the number of characters it contains. 
Because the first index of a string is 0, not 1, s[len(s)] returns an error.

On the other hand, s[len(word):] creates a slice that starts exactly len(word)
characters into the string, which could be useful.

len(s)-1 is the last index of the string. s[len(s)-1] returns the last 
character of a string.

25


	Slide 1: String Indexing, Slicing, and Looping
	Slide 2: Learning Goals
	Slide 3: How Can We Process Text Data?
	Slide 4: Indexing and Slicing
	Slide 5: Strings are Made of Characters
	Slide 6: Getting Characters By Location
	Slide 7: Common String Indexes
	Slide 8: Activity: Guess the Index
	Slide 9: String Slicing Produces a Substring
	Slide 10: String Slicing Shorthand
	Slide 11: Activity: Find the Slice
	Slide 12: Example: Extract Information from Text
	Slide 13: More String Things
	Slide 14: Special Characters
	Slide 15: Triple Quotes
	Slide 16: Membership Checks
	Slide 17: ASCII Functions
	Slide 18: Looping with Strings
	Slide 19: Looping Over Strings
	Slide 20: Algorithmic Thinking with Strings
	Slide 21: For Loop Indexes are Flexible
	Slide 22: Activity: Coding with Strings
	Slide 23: [if time] Try it with real data!
	Slide 24: Learning Goals
	Slide 25: Sidebar:  When do we use len(s) vs. len(s)-1?

