
Levels of Concurrency
15-110 – Monday 03/21



Announcements

• Hw4 was due today
• Revisions due next Tue 03/29

• Check5/Hw5 released
• Note that Check5 only has a written component – no programming part

• Code Review #2! Look for a Piazza post today with instructions to sign 
up for a slot
• Deadline: Wed, 11:59PM
• Link: https://docs.google.com/spreadsheets/d/1k-

q2D0_2a28cW4fcYJAdVdRVRarVOUvgBQ94h_0wvSo/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1k-q2D0_2a28cW4fcYJAdVdRVRarVOUvgBQ94h_0wvSo/edit?usp=sharing


Learning Goals

• Define and understand the differences between the following types 
of concurrency: circuit-level concurrency, multitasking, 
multiprocessing, and distributed computing

• Create concurrency trees to increase the efficiency of complex 
operations by executing sub-operations at the same time



Unit Introduction



Scaling Up Computing

In the unit on Data Structures and Efficiency, we determined that 
certain algorithms may take a long time to run on large pieces of data.

In this unit, we'll address the following questions:
• How is it possible for complex algorithms on huge sets of data (like 

Google search) to run quickly?
• How can we write algorithms that require communication between 

multiple computers, instead of running individually?



Moore's Law: Computers Keep Getting Faster

You've probably noticed that the 
computer you use now is much 
faster than the computer you 
used ten years ago. That's 
because of a technology principle 
known as Moore's Law.

Moore's Law basically states that 
the power of a computer doubles 
every two years. If you buy a 
computer designed in 2020, it 
should be twice as powerful as a 
computer made in 2018.

Note: Moore's Law is an 
observation, not an actual law of 
nature. But how does it work?



Transistors Provide Electronic Switching

Recall the lecture on gates and circuits. How does the computer send data to 
different circuits for different tasks?

This is accomplished using a transistor, a small device that makes it possible to 
switch electric signals. In other words, adding a transistor to a circuit gives the 
computer a choice between two different actions. Gates are partially made 
out of transistors.

When we make transistors smaller, we can decrease the distance between 
them (reducing communication time) and increase the number that fit on a 
chip. Smaller transistors also use less current. This makes the computer faster.



Moore's Law: Double the Transistors

A more precise statement of Moore's Law is that the number of transistors 
on a computer chip will double every two years. This provides the increase in 
computing power, and the speed-up.

Originally, engineers were able to double the number of transistors by 
making them smaller every year, to fit twice as many transistors on a single 
computer chip. But around 2010 it became physically impossible to make the 
transistors smaller at such a rapid rate (due to electronic leakage).

Now engineers attempt to follow Moore's Law by using parallelization
instead. In other words, your computer may contain multiple processing 
units, and may run more than one block of instructions at the same time.



Levels of Concurrency



Concurrency and Parallelization

In general, when we refer to the term concurrency, we mean that 
multiple programs are running at exactly the same time.

We will also refer to parallelization as the process of taking an 
algorithm and breaking it up so that it can run across multiple 
concurrent processes at the same time.

In this lecture, we'll discuss four different levels at which concurrency 
occurs. Next time, we'll discuss broad approaches for implementing 
parallel algorithms.



Four Levels of Concurrency

The four levels of concurrency are:

Circuit-Level Concurrency: concurrent actions on a single CPU

Multitasking: seemingly-concurrent programs on a single CPU

Multiprocessing: concurrent programs across multiple CPUs

Distributed Computing: concurrent programs across multiple computers



A CPU Manages Computation

A CPU (or Central Processing Unit) is 
the part of a computer's hardware 
that actually runs the actions taken 
by a program. It's composed of a 
large number of circuits.

The CPU is made up of several parts. 
It has a control unit, which maps the 
individual steps taken by a program 
to specific circuits. It also has many 
registers, which store information 
and act as temporary memory.



CPUs Have Many Logic Units

For our purpose, the most 
interesting part is the logic units. 
These are a set of circuits that can 
perform basic arithmetic 
operations (like addition or 
multiplication).

Importantly, the CPU has many 
duplicates of these- it might have 
hundreds of logic units that all 
perform addition.



1: Circuit-Level Concurrency

The first level of concurrency happens within a single CPU, or core. 
Because the CPU has many arithmetic units, it can break up complex 
mathematical operations so that subparts of the operation run on 
separate logic units at the same time.

For example, if a computer needs to compute (2 + 3) * (5 + 7), it can 
send (2 + 3) and (5 + 7) to two different addition units simultaneously. 
Once it gets the results, it can then send them to the multiplication 
unit. This only takes two time steps, instead of three.



Concurrency Trees

A concurrency tree is a tree that shows 
how a complex operation can be broken 
down into the fewest possible time steps. 

Actions which occur simultaneously are 
written as nodes at the same level of the 
tree. Nodes are on the same level when 
they are the same distance from the root.

The total number of steps is the number of 
non-leaf nodes in the tree. This example 
tree has three total steps.

The number of time-steps is the number of 
non-leaf levels in the tree. This example 
tree has two time-steps.

2+3

2 3 5 7

5+7

(2+3) * (5+7)

time-step 2

time-step 1



Example Concurrency Tree

For example, let's make a concurrency tree for
(a*b + c*(d/4)) * (g + f*h)

In the first time-step, we can compute a*b, 
d/4, and f*h.

The next time-step contains the operations that 
required those computations to be done 
already – c*(d/4) and g + f*h.

In general, the operations at each level could 
not be done any earlier in the process.

This tree has seven total steps and four time-
steps.

a*b

c*(d/4)

a*b + c*(d/4)

f*h

g + f*h

(a*b + c*(d/4)) * (g + f*h)

a b c d g f h4

d/4



Activity: Count Equation Steps

Consider the following equation:

((a*b + 1) - a) + ((c/2) * (d*e + f))

How many total steps does it take to compute this equation?

How many time-steps does it take to compute this equation?

Hint: If you aren't sure, try drawing a concurrency tree!



2: Multitasking

The second level of concurrency is multitasking.

This level is very different from the others in that it doesn't actually run
multiple actions at the same time. Instead, it creates the appearance of 
concurrent actions.



CPU Schedulers Arrange Programs

Multitasking is accomplished by a part of the operating system called a 
scheduler. This is a component that decides which program action will 
happen next in the CPU.

When your computer is running multiple applications at the same time 
– like your browser, and a word editor, and Pyzo – the scheduler 
decides which program gets to use the CPU at any given point.



Multitasking with a Scheduler

When multiple applications are running at the same time, the scheduler can make them 
seem to run at the same time by breaking each application's process into steps, then 
alternating between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user, even 
though only one process is running at any given point in time.

time

Process 1:

Process 2:

run

step1

run

step1

run

step 2

run

step 2

run

step3



Schedulers Can Choose Any Order

When two (or more) processes are 
running at the same time, the steps don't 
need to alternate perfectly.

The scheduler may choose to run several 
steps of one process, then switch to one 
step of another, then run all the steps of 
a third. It might even choose to put a 
process on hold for a long time, if it isn't 
a priority.

In general, the scheduler chooses which 
order to run the steps in to maximize 
throughput for the user. Throughput is 
the amount of work a computer can do 
during a set length of time.

run

step1

run run

step1 step 2

run run

step1 step 2

time

Process 1:

Process 2:

Process 3:



Your Computer Multitasks

Your computer uses multitasking to manage 
all of the applications you run, as well as 
the background processes needed to make 
your operating system work.

You can see all the applications your 
computer's scheduler is managing by going 
to your process manager (Task Manager on 
Windows, Activity Monitor on Macs). You 
can even see how much time each process 
gets on the CPU!

You do: open your process manager now to 
see how much CPU time each application 
takes



3: Multiprocessing

The third level of concurrency, multiprocessing, can run multiple 
applications at the exact same time on a single computer.

To make this possible, we put multiple CPUs inside a single computer, 
then run different applications on different CPUs at the same time.

By multiplying the number of actions we can run at a point in time, we 
multiply the speed of the computer.



Multiple Processor vs. Multi-Core

Technically there are two ways to put 
several CPUs into a single machine.

The first is to insert more than one 
processor chip into the computer. This is 
called multiple processors.

The second is to put multiple 'cores' on a 
single chip. Each core can manage its own 
set of actions. This is called multi-core.

There are slight differences between these 
two approaches in terms of how quickly the 
CPUs can work together and how they 
access memory. For this class, we'll treat 
them as the same.

Multiple 
Processors

Multi-Core



Scheduling with Multiprocessing

When we use multiple cores and multiprocessing, we can run our 
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

time

Process 3:
[on Core 1]

Process 9:
[on Core 2]

run

step3

run

run

step1

step1

run

run

step 2

step 2



Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing, 
where we condense all of the steps of an application into one block.

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4



Multiprocessing and Multitasking

The number of cores we have on a single computer is usually still limited. 
Most modern computers use somewhere between 2-8 cores. If you run more 
than 2-8 applications at the same time, the cores use multitasking to make 
them appear to run concurrently.

You can check how many cores your own computer has! If you're on 
Windows, go back to the process manager and switch to the tab 
'Performance'. If you're on a Mac, go to About This Mac > System Report > 
Hardware.

You do: look up how many cores your computer has!



Scheduling with Multiprocessing and Multitasking

Here's a simplified view of what scheduling might look like when we 
combine multiprocessing with multitasking.

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4

Microsoft Word Microsoft WordPPT PPT PPT

Firefox Firefox Firefox Firefox



4: Distributed Computing

The final level of concurrency, distributed computing, goes beyond 
using a single machine.

If we have access to several computers (each with its own set of CPUs), 
we can network them together and use them all to perform advanced 
computations by assigning different subtasks to different computers.

By multiplying the number of computers that are working on a single 
problem, we can multiply the speed of a difficult computation.



Scheduling with Distributed Computing

Each computer in the network can take a single task, break it up into further 
subtasks, and assign those subtasks to its cores. This makes it possible for us 
to attempt to solve problems which would take a long time to solve on a 
single processor.

Core 1
Core 2
Core 3
Core 4

Subtask 1-1
Subtask 1-2
Subtask 1-3
Subtask 1-4

Core 1
Core 2
Core 3
Core 4

Subtask 2-1
Subtask 2-2
Subtask 2-3
Subtask 2-4

Core 1
Core 2
Core 3
Core 4

Subtask 3-1
Subtask 3-2
Subtask 3-3
Subtask 3-4

Core 1
Core 2
Core 3
Core 4

Subtask 4-1
Subtask 4-2
Subtask 4-3
Subtask 4-4

Task 1

Task 2

Task 3

Task 4



Companies Use Distributed Computing

Distributed computing is used by big tech 
companies (like Google and Amazon) both 
to manage thousands of customers 
simultaneously and to process complex 
actions quickly.

This is where the term 'server farm' comes 
from- these companies will construct large 
buildings full of thousands of computers 
which are all networked together and ready 
to process information.

A supercomputer is very similar to 
distributed computing. It's a computer with 
a huge number of processors connected 
together. The main difference is that all the 
processors are located in the same place.



Distributed Computing Must Be Fault Tolerant

When using distributed computing, it's very important that algorithms are 
designed to be fault tolerant.

The probability that a computer randomly crashes while running a program 
is low (maybe 1 in 10,000). But server farms regularly run far more than 
10,000 computers at the same time.

Algorithms that run on distributed systems must be designed to have checks 
in place to make sure that no work is left unfinished. Typically, storage is also 
backed up on multiple machines, to make sure no data is lost if a single 
machine goes down.



Learning Goals

• Define and understand the differences between the following types 
of concurrency: circuit-level concurrency, multitasking, 
multiprocessing, and distributed computing

• Create concurrency trees to increase the efficiency of complex 
operations by executing sub-operations at the same time

Feedback: https://bit.ly/110-s22-feedback

https://bit.ly/110-s22-feedback

