
3/3/22

15-110 Recitation Week 7

Reminders
● Hw4 partial due Thursday 3/17 @ Noon EDT (Week after spring break). Start early!!
● HW4 full due Monday 3/21
● Ch3/hw3 revisions due Thursday 3/17
● Quiz 3 Friday 3/18 (Week after spring break)
● No OH the week of spring break (4-13), use piazza but expect longer wait time (i.e. +24hs)
● Reminder to �ll out mid-semester surveys for HW4 extra points - due with hw4 full!

o See Piazza posts and Wed, March 2nd slides for this

Overview
● Big-O Exercise
● Tree Code Writing
● Graph Code Writing
● Graphs Representation

Problems

BIG-O EXERCISE

Calculate the Big-O for the following examples:

Returning the last character in a string

def powersOfTwo(n):
m = 1
while m <= n:

print(m)
m *= 2

def foo(L):
if L == []:

return 0
else:

L.append(L[0])
n = L.index(10)
L.pop(len(L)-1)
return n

.index(), .pop() are O(n) worst
case!

def tripleLoop(L):
for i in range(20):

for row in L:
for elem in row:

print(elem)
#You are guaranteed L is a nxn 2D
list

TREE CODE WRITING

Write the function addEvenLeaves(t) that takes in a dictionary representation of a tree and returns a
sum of only the even values held by leaves. Follow the solution below, where the base case is reaching
the leaf node. Note: You can also write this problem with the base case being the empty tree! Feel free
to try that way as well and follow up with the TAs on the solution!

def addEvenLeaves(tree):

base case: leaf node

if ________________ and ______________:

check if leaf’s value is even

if ______________:

returns the leaves value

return ______________

else:

what should you return if the leaf isn’t even?

return ____

else:

value = 0

recursive case if left subtree is not None

if ____________:

value += _____________________

recursive case if right subtree is not None

if ____________:

value += _____________________

return value

GRAPHS CODE WRITING

Recall how we represent weighted graphs:
g = {

"A" : [["B", 5], ["G", 2]],
"B" : [["A", 5], ["C", 3]],
"C" : [["B", 3], ["H", 9]],
"D" : [["F", 4]],
"E" : [["G", 1], ["H", 7]],
"F" : [["D", 4]],
"G" : [["A", 2], ["E", 1], ["H", 2]],
"H" : [["C", 9], ["E", 7], ["G", 2]]
}

With the corresponding visual representation:

Given a graph g, write the function sumWeights that returns the sum of adding each weight in the
graph. You don’t have to worry about accounting for double counting. Ex: sumWeights(g) = 33

GRAPHS REPRESENTATION

Draw the graph corresponding to the following dictionary:
graph =
{

“A”: [“B”, “C”, “E”, “G”],
“B”: [“A”, “D”, “E”],
“C”: [“A”, “G”, “H”],
“D”: [“B”, “F”],
“E”: [“A”, “B”, “F”],
“F”: [“D”, “E”],
“G”: [“A”, “C”],
“H”: [“C”]

}

