
Week: 06 Date: 2/24/2022

15-110 Recitation Week 6
Reminders

● HW3 due Monday 2/28 at Noon
● How was Quiz 2?
● How were code reviews?

Overview
● Recursive Code Tracing
● Dictionary Review
● Hashing
● Dictionary: Code Writing

Problems

RECURSIVE CODE TRACING

Consider this recursive function:

def f(a, b):
if a == []:

return []
else:

return [a[0]] + [b[0]] + f(a[1:], b[1:])

If we call the function with these values:

print(f([1,2,3], [4,5,6]))

Trace through the code to determine what will be printed.

Tracing:

DICTIONARY REVIEW

Notes on dictionaries:

Here is an example of a type of problem that uses dictionaries. Read through the problem statement
and solution and note the key points of the code.

Problem:
Kelly’s Bakery is doing an inventory of their freshly baked goods. This morning, they baked new items and now
they need to update their inventory to represent these items. You are given a dictionary that represents the
inventory at Kelly’s Bakery, which maps the name of the item to how many items of that baked good are
available. Write the function updateInventory(d, newItems) that takes the current inventory and a new
dictionary called newItems and updates it accordingly. The function should also handle the case that there is an
item in newItems that doesn’t exist in d.

Solution:
def updateInventory(d, newItems):
for item in newItems:

if item in d:
d[item] += newItems[item]

else:
d[item] = newItems[item]

return d

HASHING

Neeraj wants to keep track of what fruits his friends like, and he decides a dictionary would be the best way to do
this. He has collected data from his friends and has run these lines of code to initialize the dictionary using the
hash function below. The corresponding hash table of length 5 is also shown below:

Note: Remember we do hash(value) % size of table if the hash is larger than the size of the table

def hash(s):
return len(s)

d = {}
d["pineapple"] = 10
d["pears"] = 7
d["bananas"] = 14

“pears” : 7 “bananas” : 14 “pineapple” “: 10

Bucket 0 Bucket 1 Bucket 2 Bucket 3 Bucket 4

1) Neeraj realizes he forgot to account for the 50 of his friends that love �gs.
a) What line of code should he use to add this to the dictionary?

b) Where will it be added in the hash table?

2) What makes this a bad hash function, and how can we make this hash function better?

3) Neeraj comes back to this dictionary later and wants to check if any of his friends like apples.
a) What line of code should Neeraj run?

b) How do we check if an element is in the hashtable?
In general:

For “apples” speci�cally:

4) What would happen if Neeraj tried to run these lines of code?

print(d["bananas"])

print(d[“pomegranate”])

5) Describe one concrete situation in which a hash table would not be an appropriate choice of data
structure. Explain why a hash table would not be appropriate in that situation.

DICTIONARY CODE WRITING

Given a list of wins by CMU, Pitt, OSU, PennState’s, and another unspeci�ed number of football teams, return
the team with the most wins. There will be no ties. For example,

mostWins([“CMU”, “Pitt”, “OSU”, “OSU”, “PennState”, “OSU”]) returns “OSU”.

We have provided the general form of the function, �ll in the blanks with the code.

def mostWins(L):

Initialize an empty dictionary

wins = dict()

Loop through the input list

for _______________ in _______________:

team = L[i]

What do we do if the team is in our dictionary?

if team in wins:

wins[team] = _______________

Otherwise?

else:

wins[team] = _______________

Initialize variables to store the team that has won

the most so far and how many times they had won

mostWinTeam = _______________

mostWins = _______________

Loop through the dictionary

for _______________ in _______________:

What do we do if the current team has won more

than the team with the most wins so far?

if _______________ > mostWins:

mostWins = _______________

mostWinTeam = _______________

Return the team that has won the most

return mostWinTeam

