
Lists and Methods
15-110 – Friday 02/11

Announcements

• Hw2 due Monday at noon

• Quiz1 grades will be released Monday

2

Learning Goals

• Read and write code using 1D and 2D lists

• Use string/list methods to call functions directly on values

3

Unit 2 Overview

4

Unit 2: Data Structures and Efficiency

Data Structures: things we use while programming to organize multiple
pieces of data in different ways.

Efficiency: the study of how to design algorithms that run quickly, by
minimizing the number of actions taken.

These concepts are connected, as we often design data structures so
that specific tasks have efficient algorithms.

5

Unit 2 Topic Breakdown

Data Structures: lists, dictionaries, trees, graphs

Efficiency: search algorithms, Big-O, tractability

6

Lists

7

Lists are Containers for Data

A list is a data structure that holds an ordered collection of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of
data using only one variable.

8

Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan

List Syntax

We use square brackets to set up a list in Python.

a = [] # empty list
b = ["uno", "dos", "tres"] # list with three strings
c = [1, "dance", 4.5] # lists can have mixed types

9

Core List/String Operations
Lists share most of their core operations with strings. You can concatenate lists together, just like
strings.

[1, 2] + [3, 4] # concatenation – [1, 2, 3, 4]
"ABC" + "DEF" # concatenation - "ABCDEF"

And you can also repeat lists an integer number of times. This works for strings too!

["a", "b"] * 2 # repetition – ["a", "b", "a", "b"]
"HA" * 3 # repetition - "HAHAHA"

We learned about indexing and slicing last time- those work on lists too.

lst = ["a", "b", "c", "d"]
lst[1] # indexing – "b"
lst[2:] # slicing – ["c", "d"]

10

Looping Over Lists

Looping over lists works the same way as with strings. We can use a for
loop over the indexes of the list to access each item. For example, the
following loop sums all the values in prices.

total = 0
for i in range(len(prices)):

total = total + prices[i]
print(total)

11

Example: findMax(nums)
Let's write a function that finds the maximum value in a list of integers.

def findMax(nums):
biggest = nums[0] # why not 0? Negative numbers!
for i in range(len(nums)):

if nums[i] > biggest:
biggest = nums[i]

return biggest

We'll often use this algorithmic structure to find the biggest/best item in a
structure.

12

Membership Checks

Recall that strings can be broken down into individual parts (characters). The
same is true of lists, which can be broken into individual values. Data types
that can be broken down into parts in an ordered fashion are called
sequences.

We can use a special operator called in to see whether an individual part
occurs in a sequence data type. This returns a Boolean.

"e" in "Hello" # True
"W" in "CRAZY" # False
4 in ["a", "b", 1, 2] # False

13

Sidebar: Built-in List/String Functions

There are some new built-in functions we'll want to use with lists and/or strings.

len(s) # length of a string/list

ord(c) # ASCII number of a character
chr(x) # character associated with the ASCII number

min(lst) # min element of the list
max(lst) # max element of the list
sum(lst) # total sum of elements in the list

random.choice(lst) # picks a random element from the list

14

Activity: Evaluate the Code

You do: what will each of the following code snippets evaluate to?

[5] * 3

"A" in "easy"

min([5, 1, 8, 2])

15

2D Lists

16

2D Lists are Lists of Lists

We often need to work with data that is
two-dimensional, such as the coordinates
on a grid, values in a spreadsheet, or
pixels on a screen. We can store this type
of data in a 2D list, which is just a list that
contains other lists.

For example, the 2D list to the right holds
population data, where each population
datapoint itself contains multiple data
values (city, county, and population).

17

Population List

0.

1.

2.

3.

4.

0. "Pittsburgh"
1. "Allegheny"
2. 302407

0. "Philadelphia"
1. "Philadelphia"
2. 1584981

0. "Allentown"
1. "Lehigh"
2. 123838

0. "Erie"
1. "Erie"
2. 97639

0. "Scranton"
1. "Lackawanna"
2. 77182

Syntax of 2D Lists

Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh", "Allegheny", 302407],
["Philadelphia", "Philadelphia", 1584981],
["Allentown", "Lehigh", 123838],
["Erie", "Erie", 97639],
["Scranton", "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second
index into a column. The length of a 2D list is the number of lists in the outer list.

cities[2] # ["Allentown", "Lehigh", 123838]
cities[2][1] # "Lehigh"
len(cities) # 5

18

This is across multiple
lines, but treated as one
line because each part
ends with a comma!

Looping Over 2D Lists

We can loop over a 2D list the same way we loop over a list. Indexing into a
list once will produce an inner list. We'll need to index a second time to get a
value.

def getCounty(cities, cityName):
for i in range(len(cities)):

entry = cities[i] # entry is a list
if entry[0] == cityName:

return entry[1]
return None # city not found

19

Looping Over All 2D List Elements

When you loop over a 2D list and want to access every element, you need to use nested for loops.
Often, the outer loop iterates over the indexes of the outer list (rows) and the inner loop iterates over
the indexes of the inner list (columns).

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]
for row in range(len(gameBoard)): # each row is a list

boardString = ""

for col in range(len(gameBoard[row])): # each col is a string
boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

20

Methods

22

Methods Are Called Differently

Most string and list built-in functions (and data structure functions in general) work
differently from other built-in functions. Instead of writing:
isdigit(s)

write:
s.isdigit()

This tells Python to call the built-in string function isdigit on the string s. It will then
return a result normally. We call this kind of function a method, because it belongs to a
data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas,
which is a data structure.

23

Don't Memorize- Use the API!

There is a whole library of built-in string and list methods that have already been
written; you can find them at
docs.python.org/3/library/stdtypes.html#string-methods
and
docs.python.org/3/tutorial/datastructures.html#more-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be
hard to memorize all of them. Instead, use the Python documentation to look for
the name of a function that you know probably exists.

If you can remember which basic actions have already been written, you can always
look up the name and parameters when you need them.

24

https://docs.python.org/3.8/library/stdtypes.html
https://docs.python.org/3/tutorial/datastructures.html

Some Methods Return Information

Some methods return information about the
value.

s.isdigit(), s.islower(), and
s.isupper() return True if the string is all-
digits, all-lowercase, or all-uppercase, respectively.

s.count(x) and lst.count(x) return the
number of times the subpart x occurs in s or lst.

s.index(x) and lst.index(x) return the
index of the subpart x in s or lst, or raise an
error if it doesn't occur in the value.

s = "hello"
lst = [10, 20, 30, 40, 50]

s.isdigit() # False
s.islower() # True
"OK".isupper() # True

s.count("l") # 2
lst.count(20) # 1

s.index("o") # 4
lst.index(5) # ValueError!

25

Example: Checking a String

As an example of how to use methods, let's write a function that
returns whether or not a string holds a capitalized name. The first letter
of the name must be uppercase and the rest must be lowercase.

def formalName(s):
return s[0].isupper() and s[1:].islower()

26

Some Methods Create New Values

Other string methods return a new value based
on the original.

s.lower() and s.upper() return a new
string that is like the original, but all-lowercase
or all-uppercase, respectively.

s.replace(a, b) returns a new string where
all instances of the string a have been replaced
with the string b.

s.strip() returns a new string with excess
whitespace (spaces, tabs, newlines) at the front
and back removed.

s = "Hello"

a = s.lower() # a = "hello"
b = s.upper() # b = "HELLO"

c = s.replace("l", "y")
c = "Heyyo"

d = " Hi there ".strip()
d = "Hi there"

27

Some Methods Change Data Types

Finally, some methods let you convert between
strings and lists as needed.

s.split(c) splits up a string into a list of
strings based on the separator character, c.

c.join(lst) joins a list of strings together
into a single string, with the string c between
each pair.

e = "one,two,three".split(",")
e = ["one", "two", "three"]

f = "-".join(["ab", "cd", "ef"])
f = "ab-cd-ef"

28

Example: Making New Strings

We can use these new methods to make a silly password-generating function.

def makePassword(phrase):
phrase2 = phrase.lower()
phrase3 = phrase2.replace("a", "@").replace("o", "0")
return phrase3

29

[if time] Activity: getFirstName(fullName)

You do: write the function getFirstName(fullName), which takes a
string holding a full name (in the format "Farnam Jahanian") and
returns just the first name. You can assume the first name will either be
one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate the
first name from the rest of the string.

30

Learning Goals

• Read and write code using 1D and 2D lists

• Use list methods to change lists without variable assignment

Feedback: https://bit.ly/110-s22-feedback

31

https://bit.ly/110-s22-feedback

