
Quiz1 &
Activity: Looping over Strings

15-110 – Wednesday 02/09

Quiz1

2

Announcements

• Check2 went well – good work!

• Hw2 due Monday at noon. Start early!

• Quiz grades à Monday

3

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

4

Activity: How to Process Text Data?

So far, we've mainly written programs that deal with numbers.

We can use strings in programs, but there isn't much we can do with
them. But real text data is modular- you can break it up into sentences,
words, letters.

How can we write code that treats text like a set of data instead of a
single item?

5

Indexing and Slicing

6

Strings are Made of Characters

Unlike numbers and Booleans, strings can be broken down into individual
parts (characters). How can we access a specific character in a string?

First, we need to determine what each character's position is. Python assigns
integer positions in order, starting with 0.

S T E L L A

0 1 2 3 4 5
7

STELLA

Getting Characters By Location

If we know a character's position, Python will let us access that
character directly from the string. Use square brackets with the integer
position in between to get the character. This is called indexing.

s = "STELLA"
c = s[2] # "E"

We can get the number of characters in a string with the built-in
function len(s). This function will prove useful soon.

8

Common String Indexes

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?
s[len(s)] # runtime error

9

Activity: Guess the Index

Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

10

String Slicing Produces a Substring

We can also get a whole substring from a string by specifying a slice.

Slices are exactly like ranges – they can have a start, an end, and a step.
But slices are represented as numbers inside of square brackets,
separated by colons.

s = "abcde"
print(s[2:len(s):1]) # prints "cde"
print(s[0:len(s)-1:1]) # prints "abcd"
print(s[0:len(s):2]) # prints "ace"

11

String Slicing Shorthand

Like with range, we don't always need to specify values for the start, end,
and step. These three parts have default values: 0 for start, len(value) for
end, and 1 for step. But the syntax to use default values looks a little
different.

s[:] and s[::] are both the string itself, unchanged

s[1:] is the string without the first character (start is 1)

s[:len(s)-1] is the string without the last character (end is len(s)-1)

s[::3] is every third character of the string (step is 3)

12

Activity: Find the Slice

Given the string "abcdefghij", what slice would we need to get the
string "cfi"?

13

Looping with Strings

14

Looping Over Strings

Now that we have string indexes, we can loop over the characters in a
string by visiting each index in the string in order.

If the string is s, the string's first index is 0 and the last index is
len(s) – 1. Use range(len(s)).

s = "Hello World"
for i in range(len(s)):

print(i, s[i])

15

When do we use len(s) vs. len(s)-1

• len(s) is the length of the string, and one beyond the last index.
s[len(s)] returns an error
• len(“STELLA”) returns 6. For "STELLA" we would have s[6], which is an

index outside of the string

• len(s) – 1 is the last index of the string.
• Use s[len(s)-1] to get the last character.
• len("STELLA") – 1 returns 5. For "STELLA" we would have s[5],

which is “A”

16

Algorithmic Thinking with Strings

If you need to solve a problem that involves doing something with every character
in a string, use a for loop over that string.

For example – how do we make a version of a string that doesn't include any
spaces? Make a new string by checking each character and only add each one if it
isn't a space.

s = "Wow! This is so exciting!"
result = ""
for i in range(len(s)):

if s[i] != " ":
result = result + s[i]

print(result) # "Wow!Thisissoexciting!"
17

For Loop Indexes are Flexible

For loops may seem straightforward when the loop control variable refers to each
index in the string. But we can get more creative with what the variable is used for
when necessary!

For example – how would you check whether a string is a palindrome (the same
front-to-back as it is back-to-front)? Use the variable as the front index and the
back index offset.

def isPalindrome(s):
for i in range(len(s)):

if s[i] != s[len(s) - 1 - i]:
return False

return True
18

Try on your own: Coding with Strings

You might be able to recognize a person by the types of punctuation they use
in text messages. Maybe one friend loves exclamation points while another
friend never uses them.

You do: write a function getPunctuationFrequency(text, punc) that
takes a text message (a string) and a punctuation character (another string)
and returns the frequency of how often that character appears in the text
compared to other characters - the number of times it appears over the total
number of characters.

For example, getPunctuationFrequency("That's so exciting!!
Good for you man!", "!") would return ~0.079, because exclamation
marks form 3/38 = ~0.079 as a ratio of the characters in the text.

19

Try it with real data!

We can try running our analysis function on real texts!

Websites like Project Gutenberg make the text of books available online for free.
You can copy that text into a string, then run that string through the function.

Running the function through some popular classic fiction and trying out a few
different types of punctuation already gleans interesting results. For example, the
character . takes up 1.15% of text in The Great Gatsby compared to 0.82% in Pride
and Prejudice; on the other hand, the character ; takes up only 0.03% of text in The
Great Gatsby compared to 0.21% of text in Pride and Prejudice.

Combining these frequencies together can give us an interesting map of the writing
styles of different authors!

20

https://www.gutenberg.org/

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

Feedback: https://bit.ly/110-s22-feedback

21

https://bit.ly/
https://bit.ly/110-s22-feedback

