Quiz 5 Review Session

There are four types of concurrency.

- 1. Circuit-Level Concurrency: concurrent actions on a single CPU
- 2. Multitasking: seemingly-concurrent programs on a single CPU
- 3. Multiprocessing: concurrent programs across multiple CPUs
- 4. Distributed Computing: concurrent programs across multiple computers

Concurrency Tree

- Tree that shows how operations can be broken down into time steps
 - Nodes on the same level are simultaneous actions
 - Total number of steps: number of non-leaf nodes
 - Time Steps: number of non-leaf levels

Problems with Multiprocessing

- Deadlock: occurs when two or more processes are all waiting for a resource that another group holds → caused by locking and yielding resources
- Difficulty of design: must design algorithms that work across multiple processes and computers

Pipelining

- increases efficiency of repeated operations by using sub-steps simultaneously
- like an assembly line: the cores start new computations while others are still in progress
- each core has one task
- the order in steps is important
- the length of time depends on the longest step
- most useful when shared resources are limited

MapReduce Pattern

- algorithm for organizing parallelized programs
- takes large data set and breaks up data across cores
- mapper: takes piece of data and finds partial result
- reducer: takes set of partial results and combines them
- manager: moves data through mapper and reducer, outputs final result

The Internet

- **decentralized** global network of connected computer networks
- routers: take in data and send to certain location
 - o connected by cables or wi-fi
- **ISPs**: connect user's computer to Internet
- **browser**: application that receives data from Internet and organizes into webpage
 - o receives text and turns into visual content using **HTML protocol**
- **URL** is like a nickname for website, and **IP address** is like the real name
 - o ex. URL: google.com, IP address: 172.217.9.206
 - O IP address can be **static** for specific websites, or **dynamic** assigned to different computers at different times

The Internet

- **DNS server**: computer that maintains a mapping of all URLs to IP addresses
 - o finds requested IP address and sends it back to ISP through routers
- protocol: standard conditions that need to be met for request to be fulfilled
 - HTTP is the standard protocol for requesting information from a website
- packet: stores the data and records destination and return addresses (IP addresses)
 - takes different paths to get to and from IP addresses
- the cloud: computers that are connected to the Internet
 - exceptionally fault tolerant

The internet is **Fault tolerant**. There is no one point of control