15-110 Quiz 4 Review Session

Led by: Stephen and Otto

Gameplan

- Review the major topics
- Big 0
- Trees
- Graphs
- Tractability
- Go over some practice problems
- $\mathrm{Q}+\mathrm{A}$

Big 0

- A way for programmers to group certain functions into different families based on their speed/efficiency
- Measure based on worst case
- Ignore lower order terms!

$f(n)$	Big-O
n	$O(n)$
$32 n+23$	$O(n)$
$5 n^{2}+6 n-8$	$O\left(n^{2}\right)$
$18 \log (n)$	$O(\log n)$

Common Themes in Big 0

- For loops
- Check how many times the for loop is running
- If it's related to the input (i.e. len(Ist)), then it's $O(n)$
- If it's looping a constant amount (for i in range(20)), it's $\mathrm{O}(1)$
- While loops
- Check how the while loop is increasing/decreasing the iterator variable
- If it's using addition/subtraction, it's O(n)
- If it’s using multiplication/division, it's O(log n)
- Most built in functions/methods (len, .append(), indexing into an array, etc.) are O(1) UNLESS OTHERWISE SPECIFIED
- .find(), in, and other methods/functions that search through are $O(n)$

Strategy to Big 0

1. Go through a function line by line
2. Find the Big O value of each individual line
a. Most lines are O (1)!
3. Once you're done, go through to find the total Big 0
a. If it's one the same indentation levels, add up their big O's

$$
\text { i. } \quad O(1)+O(1)+O(1)=O(3)
$$

b. If a line is indented, or nested, in another line, multiply their big O's

$$
\text { i. } O(n) * O(n)=O\left(n^{\wedge} 2\right)
$$

4. At the end, make sure to simplify whatever value you get to fit into a function family

$$
\text { a. } O\left(3 n^{\wedge} 2+2 n+6\right) \rightarrow O\left(n^{\wedge} 2\right)
$$

Big O Example

\# s is a string larger than 10 characters def mur(s):
result = ""
for i in range(10):
result += s[i]
return result

Big 0 Example

\# L is a list of integers def allPossiblePairs(L):
result = []
for x in L:
for y in L:
result += [[x, y]]
return result

Big O Example

\# n is a positive integer
def foo(n):
result = 0
while (n > 0):
$\mathrm{n}=\mathrm{n} / / 2$
result += 1
return result

Tractability

- A problem is said to be tractable if it has a reasonably efficient runtime:
$0(1), O(\log n), O(n \log n), O\left(n^{\wedge} 2\right), O\left(n^{\wedge} 10000\right)$
- ^ Polynomial time
- Intractable:
- $O\left(2^{\wedge} n\right), O(n!), O\left(k^{\wedge} n\right)$
- ^ Bigger than polynomial time

Brute Force Algorithms

- Brute force algorithms check every possible solution.
- []
- [1]
- Ex. Testing every subset of $[1,2,3]$ for subset sum ====>
- Other ones: travelling salesperson, puzzle-solving, and exam scheduling
- [2]
- [1, 2]
- Generally are intractable solutions.
- [3]
- [1, 3]
- [2, 3]
- [1, 2, 3]

P vs. NP

	P	NP
Verifying	Tractable	Tractable
Solving	Tractable	$?$

Why isn't traveling salesperson in this diagram?

Heuristics

- Shortcuts to find a solution that is not the best, but is close.
- Finding the best solution often takes a really long time
- Finding a good solution is often much easier

Trees

- Another different data structure
- Hierarchical structure (up, down)
- Uses nodes, and each node has a value
- Nodes connected below a node are the children, and the node above is the parent
- Top node is root, nodes with no children are leaves

Trees Example

Binary Search Trees

- A specific type of tree which allows for easy search of values (binary search! It's in the name!)
- The main rule for BSTs
- Everything to the left of a node must be less than the value at that node, and everything to the right of the node must be greater than the value at that node

Balanced vs. Unbalanced Search Trees

Trees in Code

- Store in a dictionary!
- Three keys: contents, left, right
- Contents is the value at that node
- Left and right are either another dictionary containing the same three keys, or None, meaning there is no child.
\{ "contents" : nodeValue, "left" : LeftChildSubtree, "right" : rightChildSubtree \}

Trees Example

Say we are given a tree, where each node has two children (not necessarily a BST, but you can think of it like that). Write a recursive function addOdds(tree) that adds all of the odd leaves and returns the sum of all the odd leaves.

def addOdds(tree):
if tree["left"] == None and tree["right"] == None:
\# Base case: We are at a leaf node
if tree["contents"] \% 2 == 1:
return tree["contents"]
else:
return 0
else:
\# Recursive case: We are not at a leaf node
result = 0
if tree["left"] != None:
result += addOdds(tree["left"])
if tree["right"] != None:
result += addOdds(tree["right"])
return result

Graphs

- Similar to trees - nodes connected to other nodes
- Less restrictions - any node can be connected to any other node, no longer follows a hierarchical structure
- Graphs have edges - edges are the connections between the nodes
- Sometimes, edges can have weights, which is just a number associated with the edge
- Edges can also be directed or
 undirected

Graphs in Code

\{ node : [[neighborValue, weight]],
... \}

- Treated as a dictionary!
- Stored slightly differently if the graph is weighted or not
- Loop through all nodes with a for each loop (same as keys in dictionary)
\{ nodeValue : [neighborValue],
... \}

Graph Problem

Say we are given a certain person in our graph, in this case, Michael. Write a function
findFriendsList(person, g) that takes a person and a graph, and returns all the friends of that person in the form of a list.

Michael

- Friends = 1
- Dating $=3$
- Hate =-3
- Dislike = -1
- One has a crush on the other = 2
- No relationship stated $=0$
def getFriends(person, g):
friendList = []
for relation in $g[p e r s o n]:$
if relation[1] == 1:
\# This is a friend :)
friendList += [relation[0]]
return friendList

Graph Problem

Write a function getAllCouples(g) that takes in a graph, and returns a list of all the couples in the graph, stored together as a 2d list.

Michael

- Friends = 1
- Dating $=3$
- Hate =-3
- Dislike = -1
- One has a crush on the other = 2
- No relationship stated $=0$

def getAllCouples(g):

couples = []
for person in $\mathrm{g}:$
for relation in g[person]:
if relation[1] == 3:
\# They are dating
couple = [person, relation[0]]
couples += [couple]
\# NOTE: This will contain duplicates of each couple return couples

Breadth vs. Depth First Search

- Different ways of searching for a given node on a graph

- BFS: start at a node, go through every one of its neighbors, and then go to the neighbors after, etc. until found/looked through everything
- DFS: start at a node, keep searching down one path until you can/can't find something,
 start from start again and repeat

That's it!

Any questions?

