
15-110 Quiz 4 Review Session

Led by: Stephen and Otto

Gameplan ● Review the major topics
○ Big O
○ Trees
○ Graphs
○ Tractability

● Go over some practice
problems

● Q + A

Big O

● A way for programmers to group certain functions into different families based
on their speed/efficiency

● Measure based on worst case
● Ignore lower order terms!

Common Themes in Big O

● For loops
○ Check how many times the for loop is running

■ If it’s related to the input (i.e. len(lst)), then it’s O(n)
■ If it’s looping a constant amount (for i in range(20)), it’s O(1)

● While loops
○ Check how the while loop is increasing/decreasing the iterator variable

■ If it’s using addition/subtraction, it’s O(n)
■ If it’s using multiplication/division, it’s O(log n)

● Most built in functions/methods (len, .append(), indexing into an array, etc.) are
O(1) UNLESS OTHERWISE SPECIFIED
○ .find(), in, and other methods/functions that search through are O(n)

Strategy to Big O

1. Go through a function line by line
2. Find the Big O value of each individual line

a. Most lines are O(1)!
3. Once you’re done, go through to find the total Big O

a. If it’s one the same indentation levels, add up their big O’s
i. O(1) + O(1) + O(1) = O(3)

b. If a line is indented, or nested, in another line, multiply their big O’s
i. O(n) * O(n) = O(n^2)

4. At the end, make sure to simplify whatever value you get to fit into a function
family
a. O(3n^2 + 2n + 6) → O(n^2)

Big O Example

Big O Example

Big O Example

Tractability

● A problem is said to be tractable if it has a reasonably efficient
runtime:
○ O(1), O(log n), O(n log n), O(n^2), O(n^10000)
○ ^ Polynomial time

● Intractable:
○ O(2^n), O(n!), O(k^n)
○ ^ Bigger than polynomial time

Brute Force Algorithms

● Brute force algorithms check every possible solution.
○ Ex. Testing every subset of [1,2,3] for subset sum ====>
○ Other ones: travelling salesperson, puzzle-solving, and

exam scheduling
● Generally are intractable solutions.

P vs. NP

Why isn’t traveling salesperson in this diagram?

Heuristics

● Shortcuts to find a solution that is not the best, but is close.
○ Finding the best solution often takes a really long time
○ Finding a good solution is often much easier

Trees

● Another different data structure
● Hierarchical structure (up, down)
● Uses nodes, and each node has a

value
● Nodes connected below a node are

the children, and the node above is
the parent

● Top node is root, nodes with no
children are leaves

Trees Example

Root: 8

Node: all of them! (1, 3, 4, 6…13)

Children (of 8): 3, 10

Leaves: 1, 4, 7, 13

Binary Search Trees

● A specific type of tree which allows for easy search of values (binary search!
It’s in the name!)

● The main rule for BSTs
○ Everything to the left of a node must be less than the value at that

node, and everything to the right of the node must be greater than the
value at that node

Balanced vs. Unbalanced Search Trees

Trees in Code

● Store in a dictionary!
○ Three keys: contents, left, right

■ Contents is the value at that node
■ Left and right are either another dictionary containing the same three

keys, or None, meaning there is no child.

Trees Example

Say we are given a tree, where
each node has two children
(not necessarily a BST, but you
can think of it like that). Write
a recursive function
addOdds(tree) that adds all of
the odd leaves and returns the
sum of all the odd leaves.

Graphs

● Similar to trees – nodes connected to
other nodes

● Less restrictions – any node can be
connected to any other node, no longer
follows a hierarchical structure

● Graphs have edges – edges are the
connections between the nodes
○ Sometimes, edges can have

weights, which is just a number
associated with the edge

○ Edges can also be directed or
undirected

Graphs in Code

● Treated as a dictionary!
○ Stored slightly differently if the graph is weighted or not
○ Loop through all nodes with a for each loop (same as

keys in dictionary)

Graph Problem

Say we are given a certain
person in our graph, in
this case, Michael. Write
a function
findFriendsList(person, g)
that takes a person and a
graph, and returns all the
friends of that person in
the form of a list.

M

Graph Problem

Write a function
getAllCouples(g) that
takes in a graph, and
returns a list of all the
couples in the graph,
stored together as a 2d
list.

M

Breadth vs. Depth First Search

● Different ways of searching for a
given node on a graph
○ BFS: start at a node, go through

every one of its neighbors, and
then go to the neighbors after,
etc. until found/looked through
everything

○ DFS: start at a node, keep
searching down one path until
you can/can’t find something,
start from start again and repeat

That’s it!
Any questions?

