15110 Quiz 3

Keerthana & Fiona

1D Lists

- Alist is a data structure that holds
an ordered collection of data
values.

- Forloops to access elements in a
list

¥§mmemmuﬁmdmmewmﬂbmwﬂwﬁm&%uwnmmmmmeMEMym%ﬁmﬁm
strings.

[1, 2]+ [3, 4] # concatenation - [1, 2, 3, 4]
"ABC" + "DEF" # concatenation - "ABCDEF"

And you can also repeat lists an integer number of times. This works for strings too!

[Ilall’ Ilbll] * 2 # r\epetition = [llall, Ilbll, llall’ Ilbll]
"HA" * 3 # repetition - "HAHAHA"

We learned about indexing and slicing last time- those work on lists too.
1St = ["a", ubnJ "C", ndu]

1st[1] # indexing - "b"
1st[2:] # slicing - ["c", "d"]

findMax()

def findMax(nums):
biggest = nums[@] # why not ©? Negative numbers!
for i in range(len(nums)):
if nums[i] > biggest:
biggest = nums[i]
return biggest

Strings (and how to use built in functions)

- Strings can be accessed by each character, and within each
character you can perform methods.

- Use in to see whether a specific character or part exists in a
string (use it as a boolean check)

Built in functions for strings

len(s) # length of a string/list

ord(c) # ASCII number of a character
chr(x) # character associated with the ASCII number

min(lst) # min element of the list
max(lst) # max element of the list

sum(lst) # total sum of elements in the list

random.choice(lst) # picks a random element from the list

2D Lists

A 2D list is a list that contains lists within.

When indexing into 2D lists, you must
first index into the original list, and then
index further to access specific data
values.

Loop over 2D lists the same way you
would over 1D lists (what would be the
difference?)

cities[2]
cities[2][1]
len(cities)

String Methods

- String methods can be used to either return new values, or to return
information.

- Call string methods differently than normal methods
s.isdigit()
- In s.isdigit() you would be calling isdigit on s the string
- Use the . to indicate what string you are calling it on
- When using string methods, do not memorize them, there is an APl you can
use!

References and Memory

- Areference (often called a pointer)
is a specific address in memory.
References are used to connect
variables to their values.

n

o o
o
I

3:D

Memory: Hello

3.5

References and Memory

- Let’s say you have the value s which equals “bye”.

- You make s =s + “sam”

- Now s has a new value which is “bye sam”

- The reference to “bye” no longer exists.

- Ifyoumade y =s, now y and s have the same reference to bye sam.

References and Memory

- When you initialize a list, there is a large chunk of memory allocated to this
list, more than what is necessary.

% = [1; 25 3] Variables: |[x | _~

Technically each index also holds Memory: 1 2 3

a reference to a new location, but
that's out of scope for this course

Mutable and Immutable Values

- Lists are mutable and strings are immutable. This is important!

- We call data types that can be modified without reassignment this way
mutable. Data types that cannot be modified directly are called immutable.

- This is referring to how you do .append to a list, but to change a string, you
must create an entirely new string.

- Creating a new list by making it equal to the old one copies the reference as
we went over previously.

Mutable and Immutable Values

- If you share a reference between two lists, and change one of them, both of
them reflect the change.
- The reason this happens is because of the reference these two lists share!!

Destructive vs. Non- destructive

- Destructive approaches
change the data values
without changing the variable Ist = ["A", "B", "€"]
reference. Any aliases of the ASESERBENAL "E"2) & Bid) MALIE 5 e Bnll ,

l1st.insert(@, "foo") # inserts 2"d param into 15t param index

Variab!e will see the Change as l1st.extend(["F", "G"]) # adds multiple elements
well, since they refer to the

How do we add a value to a list destructively? Use destructive methods - append, insert, or extend.

same ||St How do we add a value to a list non-destructively? Use variable assignment with list concatenation.
- Non-destructive approaches 1st = ["A", "B", "C"]
make a new |iSt, g|V|ng it a 1st = 1st + ["E"] # note that "E" needs to be in its own list

warning: 'lst +=' and 'lst = lst +' behave differently!

new reference. This "breaks 1st = 1st[:len(1lst)//2] + ["F"] + 1lst[len(1lst)//2:]

the alias and doesn't change
the previously-aliased
variables.

Aliasing

- In Python, aliasing happens whenever one variable's value is assigned to
another variable, because variables are just names that store references to
values.

def foo(lst):
1st[1] = "bar"

x = [1, 2, 3]
print(foo(x)) # when 1lst is created, it copies x's reference
print(x) # now 2 has been replaced with "bar"

Recursion

To solve a problem recursively:
1. Find a way to make the problem slightly smaller
2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with the solution to the remaining
part of the problem to get the answer

Recursion

- The base case is the one of the most important steps to recursion. It solves
the problem without delegating, and it's the simplest case of the entire
recursive process.

- The other case is the recursive case, and this is when you keep going until
you reach the smallest problem, at that point which you will reach the base

case.
def recursiveAddCards(cards):
if cards == []:
return ©
else:
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)

return cards[©] + smallerResult

factorial(x)

def factorial(x):
if x == 1: # base case
return 1 # something not recursive
else:
smaller = factorial(x - 1) # recursive call
return x * smaller # combination

countVowels()

def countVowels(s):
if : # base case
return
else: # recursive case
smaller = countVowels(

return

)

Tower of Hanoi

Recursive solution:
1. Delegate moving all but one of the discs to the temporary platform.
2. Move the remaining disc to the end platform.

3. Delegate moving the all but one pile to the end platform.

Tower of Hanoi

Prints instructions to solve Towers of Hanoi and
returns the number of moves needed to do so.
def moveDiscs(start, tmp, end, discs):

if discs == 1: # 1 disc - move it directly
print("Move one disc from", start, "to", end)
return 1
else: # 2+ discs - move N-1 discs, then 1, then N-1
moves = O
moves = moves + moveDiscs(start, end, tmp, discs - 1)
moves = moves + moveDiscs(start, tmp, end, 1)
moves = moves + moveDiscs(tmp, start, end, discs - 1)

return moves

result = moveDiscs("left", "middle", "right", 3)
print("Number of discs moved:", result)

Searching Algorithms

Linear Search - lIterative

e in python we can use the in operator to check if an item is in a list
o the in operator is implemented with a search algorithm

e analogies for linear search
o uncovering a row of cards one by one to find a specific card
o checking a stack of books to find a specific book

Searching Algorithms

Linear Search - Recursive

e Base Case(s)
o If the input is an empty list we want to return False
o If the list contains a single element that is our target we want to return
True
e Recursive Case
o The smaller problem is everything minus the first element in the list

Searching Algorithms

Linear Search - Recursive

def recursivelLinearSearch(lst, target):
if 1st == | |z
return False
elif 1lst[@] == target:
return True

else:

Searching Algorithms

Binary Search - Recursive

e We can use binary search on a sorted list
o Start in the middle and eliminate half of the list after comparing your
target with the middle element
e Analogies for binary search
o searching for a book in a library - sorted by author’s name
o searching for a house on a street - houses arranged in order

Searching Algorithms

PRACTICE - CODE TRACING

e How many times will the function binarySearch() be called after the following

?
code runs def binarySearch(lst, target):

print("search called")
if len(lst) == 0:
return False
else:
midIndex = len(lst) // 2
if lst[midIndex] == target:
return True
elif target < lst[midIndex]:
return binarySearch(lst[:midIndex], target)
else: # lst[midIndex] < target
return binarySearch(lst[midIndex+1:], target)

binarySearch([2,4,5,7,9,14,23], 1)

Dictionaries

e Key-value pairs
o dictionaries store information in key-value pairs
o you can access specific values in the dictionary by looking up the key
o keys must be immutable!
e Using loops on dictionaries
o We can use FOR EACH loops when working with dictionaries to loop
directly over the keys (for key in d)
o to access the value corresponding to every key we can use d[key] (NOT
“key”!)

Dictionaries

PRACTICE - CODE WRITING (Part 1)

Write a function meanAge(d) that takes in a dictionary d that maps a student’s
name (a string) to their age (an integer) and calculates the mean age of students

in the class.
d = {"Bill": 20,

"Sophie": 35,
"Millie": 19,
"Hailey": 18,
"Freddie": 20,
"Derek": 21,
"Peter”: 18,

"Kevin": 22}

Dictionaries
PRACTICE - CODE WRITING (Part 2)

Write a function newStudents(d, names, ages) that takes in a dictionary d, a list of
names, and a list of corresponding ages (guaranteed to be the same length) and

adds the name and age to the class dictionary. If the name already exists, do not

add the person to the dictionary. Your function should return the updated

dictionary. d = {"Bill": 20

"Sophie": 35,
"Millie": 19,
"Hailey": 18,
"Freddie": 20,
"Derek": 21,
"Peter": 18,

"Kevin": 22}

Hashing

e Hashtables
o alist with a fixed number of indexes
o it stores value(s) in buckets
e Hash functions
o we assign values to a bucket based on its hash value instead of placing it at the
end of the list
o hash functions map values to integers (this is the hash value)

Hashing

e Requirements of a good hash function
o @Given a specific value x, hash(x) must always return the same output i
o Given two different values x and y, hash(x) and hash(y) should usually return
two different outputs, i and j
e Searching a hash table
o (1) Call the hash function on the value -> this gives you the hash value (an
index)
(2) ONLY check the bucket with the corresponding index
o Since there is a “constant” number of elements in each bucket we have an
O(1) runtime

Hashing

e What must be true for us to look up a value in a hashtable in constant
time?

Hex Dec Char |Hex Dec Char |Hex Dec Char

0x20 32 Space|0x40 64 @ |J0x60 96 ~

0x21 33 ! |ox4l 65 A |0x61 97 a

- 0x22 34 " |ox42 66 B |0x62 98 b
Hashing o2 35 4 |owas €1 o |oxss 95 c
0x24 36 ¢ |ox44 68 Dp |ox64 100 d

0x25 37 % |ox45 69 E |ox65 101 e

. 0x26 38 & |ox46 70 F |ox66 102 f

PRACTICE - Hash Functions 0x27 39 ' |ox47 71 G [ox67 103 g
- - - 0x28 40 (|ox48 72 H |0x68 104 h

0x29 41) J|oxa9 73 1 |ox69 105 i

Put the following words into the hash table below I RITN N T
0x2B 43 + |O0x4B 75 K |0x6B 107 k

; ; T ” ox2c 44 , J|oxac 76 1T |ox6c 108 1
using the hash function mysteryHash(s): “flower”, o o
[11 . 1L N1 H M G HRS | 1 ” 0x2E 46 % O0x4E 78 N |0x6E 110 n
christmas”, “winter”, “pumpkin”, “goodbye S I R R
0x30 48 0 |o0x50 80 P |0x70 112 p

def mysteryHash(s): 0x31 49 1 |o0x51 81 @ |ox71 113 q
. N R 0x32 50 2 |o0x52 82 R |0x72 114 r

1f ord(s[0]) % 2 == 0: 0x33 51 3 |ox53 83 s |ox73 115 s
return ord(s[-1]) + len(s) % 10 0x34 52 4 |ox54 84 T |ox74 116 t

g 0x35 53 5 0x55 85 U |0x75 117 u

else: 0x36 54 6 |ox56 86 VvV |0x76 118 v
return len(s)//2 + ord(s[len(s)//2]) 0x37 55 7 |ox57 87 w [ox77 119 w

0x38 56 8 |0x58 88 x [0x78 120 x

0x39 57 9 0x59 89 Y |0x79 121 vy

0x3A 58 o 0x5A 90 Z J0x7A 122 z

0x3B 59 ; |ox5B 91 [[ox7B 123 {

0x3c 60 < J|oxsc 92 \ |ox7c 124 |

0x3D 61 = |ox5D 93] [ox7D 125 }

0x3E 62 > |ox5E 94 ~ |ox7E 126 -~

0x3F 63 2 |ox5F 95 _ |0x7F 127 DEL

