
15110 Quiz 3
Keerthana & Fiona



1D Lists

- A list is a data structure that holds 
an ordered collection of data 
values.

- For loops to access elements in a 
list



findMax()



Strings (and how to use built in functions)

- Strings can be accessed by each character, and within each 
character you can perform methods. 

- Use in to see whether a specific character or part exists in a 
string (use it as a boolean check)



Built in functions for strings



2D Lists

- A 2D list is a list that contains lists within.
- When indexing into 2D lists, you must 

first index into the original list, and then 
index further to access specific data 
values. 

- Loop over 2D lists the same way you 
would over 1D lists (what would be the 
difference?)



String Methods

- String methods can be used to either return new values, or to return 
information. 

- Call string methods differently than normal methods
- s.isdigit()

- In s.isdigit() you would be calling isdigit on s the string
- Use the . to indicate what string you are calling it on
- When using string methods, do not memorize them, there is an API you can 

use!



References and Memory

- A reference (often called a pointer) 
is a specific address in memory. 
References are used to connect 
variables to their values.



References and Memory

- Let’s say you have the value s which equals “bye”.
- You make s = s + “sam”
- Now s has a new value which is “bye sam”
- The reference to “bye” no longer exists. 
- If you made y = s, now y and s have the same reference to bye sam. 



References and Memory

- When you initialize a list, there is a large chunk of memory allocated to this 
list, more than what is necessary. 



Mutable and Immutable Values

- Lists are mutable and strings are immutable. This is important!
- We call data types that can be modified without reassignment this way 

mutable. Data types that cannot be modified directly are called immutable.
- This is referring to how you do .append to a list, but to change a string, you 

must create an entirely new string. 
- Creating a new list by making it equal to the old one copies the reference as 

we went over previously.



Mutable and Immutable Values

- If you share a reference between two lists, and change one of them, both of 
them reflect the change. 

- The reason this happens is because of the reference these two lists share!!



Destructive vs. Non- destructive

- Destructive approaches 
change the data values 
without changing the variable 
reference. Any aliases of the 
variable will see the change as 
well, since they refer to the 
same list.

- Non-destructive approaches 
make a new list, giving it a 
new reference. This 'breaks' 
the alias and doesn't change 
the previously-aliased 
variables.



Aliasing

- In Python, aliasing happens whenever one variable's value is assigned to 
another variable, because variables are just names that store references to 
values.



Recursion 

To solve a problem recursively: 

1. Find a way to make the problem slightly smaller 

2. Delegate solving that problem to someone else

 3. When you get the smaller-solution, combine it with the solution to the remaining 
part of the problem to get the answer



Recursion

- The base case is the one of the most important steps to recursion. It solves 
the problem without delegating, and it’s the simplest case of the entire 
recursive process. 

- The other case is the recursive case, and this is when you keep going until 
you reach the smallest problem, at that point which you will reach the base 
case. 



factorial(x)



countVowels()



Tower of Hanoi

Recursive solution:

1. Delegate moving all but one of the discs to the temporary platform. 

2. Move the remaining disc to the end platform. 

3. Delegate moving the all but one pile to the end platform.



Tower of Hanoi 



Searching Algorithms

Linear Search - Iterative 

● in python we can use the in operator to check if an item is in a list
○ the in operator is implemented with a search algorithm

● analogies for linear search
○ uncovering a row of cards one by one to find a specific card
○ checking a stack of books to find a specific book



Searching Algorithms

Linear Search - Recursive

● Base Case(s)
○ If the input is an empty list we want to return False
○ If the list contains a single element that is our target we want to return 

True
● Recursive Case

○ The smaller problem is everything minus the first element in the list



Searching Algorithms

Linear Search - Recursive



Searching Algorithms

Binary Search - Recursive

● We can use binary search on a sorted list
○ Start in the middle and eliminate half of the list after comparing your 

target with the middle element
● Analogies for binary search

○ searching for a book in a library - sorted by author’s name
○ searching for a house on a street - houses arranged in order



Searching Algorithms

PRACTICE - CODE TRACING

● How many times will the function binarySearch() be called after the following 
code runs?



Dictionaries

● Key-value pairs 
○ dictionaries store information in key-value pairs
○ you can access specific values in the dictionary by looking up the key
○ keys must be immutable!

● Using loops on dictionaries
○ We can use FOR EACH loops when working with dictionaries to loop 

directly over the keys (for key in d)
○ to access the value corresponding to every key we can use d[key] (NOT 

“key”!)



Dictionaries

PRACTICE - CODE WRITING (Part 1)

Write a function meanAge(d) that takes in a dictionary d that maps a student’s 
name (a string) to their age (an integer) and calculates the mean age of students 
in the class.



Dictionaries
PRACTICE - CODE WRITING (Part 2)

Write a function newStudents(d, names, ages) that takes in a dictionary d, a list of 
names, and a list of corresponding ages (guaranteed to be the same length) and 
adds the name and age to the class dictionary. If the name already exists, do not 
add the person to the dictionary. Your function should return the updated 
dictionary.



Hashing

● Hashtables
○ a list with a fixed number of indexes
○ it stores value(s) in buckets

● Hash functions
○ we assign values to a bucket based on its hash value instead of placing it at the 

end of the list
○ hash functions map values to integers (this is the hash value)



Hashing
● Requirements of a good hash function

○ Given a specific value x, hash(x) must always return the same output i
○ Given two different values x and y, hash(x) and hash(y) should usually return 

two different outputs, i and j
● Searching a hash table

○ (1) Call the hash function on the value -> this gives you the hash value (an 
index)

○ (2) ONLY check the bucket with the corresponding index
○ Since there is a “constant” number of elements in each bucket we have an 

O(1) runtime 



Hashing
● What must be true for us to look up a value in a hashtable in constant 

time?



Hashing

PRACTICE - Hash Functions

Put the following words into the hash table below 
using the hash function mysteryHash(s): “flower”, 
“christmas”, “winter”, “pumpkin”, “goodbye”


