
15-110 - Quiz4 - 11/03/2021

Name: __________________________ andrewID: _______________________

● This quiz tests material from weeks 1-8 of the course (primarily weeks 7-8).
● You have 20 minutes to take the quiz.
● If you have a clarification question, raise your hand and a proctor will come help you.
● You must complete the quiz individually. You may refer to paper notes during the

quiz, but do not communicate with anyone else.

1. Free Response - Big-O Runtime [30pts]

Write the Big-O runtime (in the worst case) of each of the following programs in the top
of the box to its right. In the space below the box show your work with a short
explanation of the parts of the program you used to calculate the runtime.

For example, if a program is O(n) because the third line does n actions, you could write
'Line 3 takes n steps'. The explanation does not need to be super detailed; just mention
the core ideas.

Note: list.count runs in O(n) time. All other built-in functions shown here run in O(1).

1: def f1(lst): # n = len(lst)

2: count = 0

3: i = 0

4: mid = len(lst) // 2

5: while i < mid:

6: if lst[i] == lst[i + mid]:

7: count = count + 1

8: i = i + 1

9: return count

1: def f2(lst): # n = len(lst)

2: res = 0

3: for i in range(len(lst)):

4: for j in range(len(lst)):

5: c = lst.count(lst[i])

6: if lst[i] < lst[j]:

7: res = res + c

8: return res

Big-O of f1: O(n)

Line 5 takes O(n/2) steps which
is equivalent to O(n) (also fine
to just say O(n))

Big-O of f2: O(n^3)

- Line 3, 4, nesting loops
iterates O(n^2) times

- Line 5 has a cost of O(n)
because of lst.count which
is a built in function

A 1

15-110 - Quiz4 - 11/03/2021

2. Code Writing - Graphs [34pts]

Write the function getShortEdges(g, limit) which takes a weighted, directed graph
in our dictionary format and a limit (an integer) and returns a 2D list holding information
about short edges. A 'short edge' is one where the edge weight is strictly smaller than
the limit provided as a parameter.

Each of the inner lists in the 2D list returned value holds information about one edge in
the format [node1, node2, weight]. The first two elements are the two neighbors
that form the edge, and the third is the edge weight between them.

For example, given the graph:

g = { "A" : [["C", 30]],

"B" : [["D", 15]],

"C" : [["B", 25], ["D", 5]],

"D" : [["C", 20]],

"E" : [["C", 10]]

}

If we call getShortEdges(g, 20), it will return
[["B", "D", 15], ["C", "D", 5], ["E", "C", 10]].

The graph is directed, so you do not need to worry about edges repeating. You also do
not need to worry about the order of the edges in the result list.

def getShortEdges(g, limit):
results = []
for node in g:

for neighbor in g[node]:
weight = neighbor[1]
if weight < limit:

element = [node] + neighbor
results.append(element)

return results

A 2

15-110 - Quiz4 - 11/03/2021

3. Short Answer - Search Algorithms [16pts]

Consider the following tree:

What nodes in the tree would the binary search algorithm visit if you searched for the
value 74? List the nodes in their visited order.

81, 71, 72, 77, 74

What nodes in the tree would the binary search algorithm visit if you searched for the
value 85? List the nodes in their visited order.

81, 83, 90, 86

4. Short Answer - Tractability [20pts]

Select all of the following statements that are true.
☐ Problem statement: check whether a list of numbers contains a set of numbers

that sum to a given target number. This problem is in the complexity class P.
☐ To show that something is in the complexity class NP, we just need to be able to

check a possible solution to that problem in polynomial time.
☐ It is possible for a problem to be in both P and NP at the same time.
☐ To prove that P = NP, we have to prove that every problem that could ever be

designed can be solved in polynomial time.
☐ To prove that P != NP, we have to find just one problem in NP that can never be

solved in polynomial time.

A 3

