Levels of Concurrency

15-110 — Monday 3/29

* Hw4 was due today

* HW5 released. Not due until 04/12

* But | recommend that you do the first three programming problems early-
you can solve them just with prior knowledge

* Define and understand the differences between the following types
of concurrency: circuit-level concurrency, multitasking,
multiprocessing, and distributed computing

* Create concurrency trees to increase the efficiency of complex
operations by executing sub-operations at the same time

Unit Introduction

In the unit on Data Structures and Efficiency, we determined that
certain algorithms may take a long time to run on large pieces of data.

In this unit, we'll address the following questions:

* How is it possible for complex algorithms on huge sets of data (like
Google search) to run quickly?

* How can we write algorithms that require communication between
multiple computers, instead of running individually?

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

! 1 ancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
YOU Ve prObably notlced that the SAn A l_“',l ‘!;Im‘»”[" tant as other aspects of technological progress 1ch as processing speed or the price of electronic product \r'e

linked to Moore's

computer you use now is much
faster than the computer you

10,000,000,000

used ten years ago. That's ——
because of a technology principle DR 8

1,000,000,000

known as Moore's Law. Y\ @ e

100,000,000 AMD KBO O 4 proscont oo
50,000,000 s 4 Witametods @, 0, 020 ow

Moore's Law basically states that
the power of a computer doubles
every two years. If you buy a
computer designed in 2020, it N
should be twice as powerful as a e »

50,000

computer made in 2018.

10,000 g eozeg o e T
5,000 s B o
¥ b ,o._, e

10,000,000 e P L
5,000,000 = @Rlamath

Transistor count

NOte: Mco)orels LaW iS an s Q \Z o J‘b v P S o o Q& > $ Q\Q Q‘\q/ Q\b‘ g\ro N
observation, not an actual law of R
nature. But how does it work? e R e e o T e BSOS TSR 7 VI e

®

Recall the lecture on gates and circuits. How does the computer send data to
different circuits for different tasks?

This is accomplished using a transistor, a small device that makes it possible to
switch electric signals. In other words, adding a transistor to a circuit gives the
computer a choice between two different actions. Gates are partially made
out of transistors.

When we make transistors smaller, we can decrease the distance between
them (reducing communication time) and increase the number that fit on a
chip. Smaller transistors also use less current. This makes the computer faster.

A more precise statement of Moore's Law is that the number of transistors

on a computer chip will double every two years. This provides the increase in
computing power, and the speed-up.

Originally, engineers were able to double the number of transistors by
making them smaller every year, to fit twice as many transistors on a single
computer chip. But around 2010 it became physically impossible to make the
transistors smaller at such a rapid rate (due to electronic leakage).

Now engineers attempt to follow Moore's Law by using Farallelization
instead. In other words, your computer may contain multiple processing
units, and may run more than one block of instructions at the same time.

Levels of Concurrency

In general, when we refer to the term concurrency, we mean that
multiple programs are running at exactly the same time.

We will also refer to parallelization as the process of taking an
algorithm and breaking it up so that it can run across multiple
concurrent processes at the same time.

In this
OCCurs.

paralle

ecture, we'll discuss four different levels at which concurrency
Next time, we'll discuss broad approaches for implementing
algorithmes.

The four levels of concurrency are:

Circuit-Level Concurrency: concurrent actions on a single CPU

Multitasking: seemingly-concurrent programs on a single CPU

Multiprocessing: concurrent programs across multiple CPUs

Distributed Computing: concurrent programs across multiple computers

A CPU (or Central Processing Unit) is
the part of a computer's hardware
that actually runs the actions taken
by a program. It's composed of a
large number of circuits.

The CPU is made up of several parts.
It has a control unit, which maps the
individual steps taken by a program
to specific circuits. It also has many
registers, which store information
and act as temporary memory.

12

CPUs Have Many Logic Units

For our purpose, the most
interesting part is the logic units.
These are a set of circuits that can
perform basic arithmetic
operations (like addition or
multiplication).

Importantly, the CPU has many
duplicates of these- it might have
hundreds of logic units that all
perform addition.

13

The first level of concurrency happens within a single CPU, or core.
Because the CPU has many arithmetic units, it can break up complex
mathematical operations so that subparts of the operation run on
separate logic units at the same time.

For example, if a computer needs to compute (2 +3) * (5 + 7), it can
send (2 + 3) and (5 + 7) to two different addition units simultaneously.
Once it gets the results, it can then send them to the multiplication
unit. This only takes two time steps, instead of three.

A concurrency tree is a tree that shows
how a complex operation can be broken
down into the fewest possible time steps.

Actions which occur simultaneously are
written as nodes at the same level of the
tree. Nodes are on the same level when
they are the same distance from the root.

The total number of steps is the number of
non-leaf nodes in the tree. This example
tree has three total steps.

The number of time-steps is the number of
non-leaf levels in the tree. This example
tree has two time-steps.

(2+3) * (5+7)

N/

time-step 2

2+3 i 5+7
time-step 1

3 5

Example Concurrency Tree

For example, let's make a concurrency tree for (a*b + c*(d/4)) * (g + F*h)
(a*b + c*(d/4)) * (g + f*h)

In the first time-step, we can compute a*b, a*b + c*(d/4)

d/4, and f*h. \
The next time-step contains the operations that

required those computations to be done c*(d/4) g + f*h
already—c*(d/4)and g + f*h.

In general, the operations at each level could a*b d/4

not be done any earlier in the process. |{\ /}l
This tree has seven total steps and four time- d b C d 4118

steps.

16

Consider the following equation:

((a*b + 1) - a) + ((c/2) * (d*e + f))

How many total steps does it take to compute this equation?
How many time-steps does it take to compute this equation?

Hint: If you aren't sure, try drawing a concurrency tree!

The second level of concurrency is multitasking.

This level is very different from the others in that it doesn't actually run

multiple actions at the same time. Instead, it creates the appearance of
concurrent actions.

Multitasking is accomplished by a part of the operating system called a
scheduler. This is a component that decides which program action will

happen next in the CPU.

When your computer is running multiple applications at the same time
— like your browser, and a word editor, and Pyzo — the scheduler
decides which program gets to use the CPU at any given point.

Multitasking with a Scheduler

When multiple applications are running at the same time, the scheduler can make them

seem to run at the same time by breaking each application's process into steps, then
alternating between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user, even
though only one process is running at any given point in time.

>

Process 1: run run run
]
Process 2: AN
run run

time
20

When two (or more) processes are
running at the same time, the steps don't
need to alternate perfectly.

g

The scheduler may choose to run several pprocess 1
steps of one process, then switch to one

step of another, then run all the steps of

a third. It might even choose to put a

process on hold for a long time, if itisn't

run run

a priority. run

Ingeneral, the scheduler chooses which AN
order to run the steps in to maximize run

run

throughput for the user. Throughput is ,
the amount of work a computer can do time
during a set length of time.

21

Your computer uses multitasking to manage
all of the applications you run, as well as
the background processes needed to make
your operating system work.

You can see all the applications your
computer's scheduler is managing by going
to your process manager (Task Manager on
Windows, Activity Monitor on Macs). You
can even see how much time each process
gets on the CPU!

You do: open your process manager now to
se|(<e how much CPU time each application
takes

. Task Manager

G Google Chrome (13)
n PowerPoint

=) Snagit (32 bit) (3)
B Sublime Text (2)

L. Task Manager

= Windows Explorer

| Background processes (129)

[@) 64-bit Synaptics Pointing Enhan...
[AcroTray (32 bit)

] Adobe Acrobat Update Service ...
&) Adobe CEF Helper

== Adobe Collaboration Synchroni...

Fewer details

File Options View
Processes Performance App history Startup Users
~
Nam Status
| Apps (6)

Details Services

27%
CPU

1.3%
0%
4.3%

0%

2.0%

0%
0%
0%
0%

0%

54%

539.6 MB
125.4 MB
68.1 MB
1.9 MB
29.6 MB

64.8 MB

0.1 MB
0.1 MB
0.1 MB
11.6 MB

0.5 MB

2%
Disk

0.1 MB/s
0 MB/s
0.1 MB/s
0 MB/s
0 MB/s

0.1 MB/s

0 MB/s
0 MB/s
0 MB/s
0 MB/s

0 MB/s

0%

Network

0 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

6%
GPU

0%
0%
1.5%
0%
0%

0%

0%
0%
0%
0%

0%

The third level of concurrency, multiprocessing, can run multiple
applications at the exact same time on a single computer.

To make this possible, we put multiple CPUs inside a single computer,
then run different applications on different CPUs at the same time.

By multiplying the number of actions we can run at a point in time, we
multiply the speed of the computer.

Multiple Processor vs. Multi-Core

Technically there are two ways to put
several CPUs into a single machine.

L : Multiple
The first is to insert more than one P
processor chilo into the computer. This is Processors
called multiple processors.

The second is to put multiple 'cores' on a
single chip. Each core can manage its own
set of actions. This is called multi-core.

There are slight differences between these Multi-Core

two approaches in terms of how quickly the
CPUs can work together and how they
access memory. For this class, we'll treat
them as the same.

24

Scheduling with Multiprocessing

When we use multiple cores and multiprocessing, we can run our
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

Process 3: nun g

N

run run
[on Core 1]
Process 9: . R
‘on Core 2| run run

v

time

25

Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing,
where we condense all of the steps of an application into one block.

Corel Microsoft Word
Core 2 Firefox

Core 3 Pyzo

Core 4 oom

The number of cores we have on a single computer is usually still limited.
Most modern computers use somewhere between 2-8 cores. If you run more
than 2-8 applications at the same time, the cores use multitasking to make
them appear to run concurrently.

You can check how many cores your own computer has! If you're on
Windows, go back to the process manager and switch to the tab

'Performance’. If you're on a Mac, go to About This Mac > System Report >
Hardware.

You do: look up how many cores your computer has!

Scheduling with Multiprocessing and Multitasking

Here's a simplified view of what scheduling might look like when we
combine multiprocessing with multitasking.

Core 1 Microsoft Word PPT Microsoft Word PPT Microsoft Word PPT

Core 2 Firefox I Firefox I Firefox I Firefox I Firefox

Core 3

Core 4

The final level of concurrency, distributed computing, goes beyond
using a single machine.

If we have access to several computers (each with its own set of CPUs),
we can network them together and use them all to perform advanced
computations by assigning different subtasks to different computers.

By multiplying the number of computers that are working on a single
problem, we can multiply the speed of a difficult computation.

Each computer in the network can take a single task, break it up into further
subtasks, and assign those subtasks to its cores. This makes it possible for us
to attempt to solve problems which would take a long time to solve on a

single processor.

Core 1
Core 2
Core 3

Task 1 Core 4

Core 1
Core 2
Core 3

Task 2 Core 4

Subtask 1-1

Subtask 1-2

Subtask 1-3

Subtask 1-4

Subtask 2-1

Subtask 2-2

Subtask 2-3

Subtask 2-4

-

Task 3

-

Task 4

Core 1
Core 2
Core 3
Core 4

Core 1
Core 2
Core 3
Core 4

Subtask 3-1

Subtask 3-2

Subtask 3-3

Subtask 3-4

Subtask 4-1
Subtask 4-2

Subtask 4-4

30

Companies Use Distributed Computing

Distributed computin? is used by big tech
companies (like Google and Amazon) both
to manage thousands of customers
simultaneously and to process complex
actions quickly.

This is where the term 'server farm' comes
from- these comﬁanies will construct large
buildings full of thousands of computers
which are all networked together and ready
to process information.

A supercomputer is very similar to
distributed computing. It's a computer with
a huge number of processors connected
together. The main difference is that all the
processors are located in the same place.

31

When using distributed computing, it's very important that algorithms are
designed to be fault tolerant.

The probability that a computer randomly crashes while running a program
is low (maybe 1 in 10,000). But server farms regularly run far more than
10,000 computers at the same time.

Algorithms that run on distributed systems must be designed to have checks
in place to make sure that no work is left unfinished. Typically, storage is also

backed up on multiple machines, to make sure no data is lost if a single
machine goes down.

* Define and understand the differences between the following types
of concurrency: circuit-level concurrency, multitasking,
multiprocessing, and distributed computing

* Create concurrency trees to increase the efficiency of complex
operations by executing sub-operations at the same time

* Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

