
Unit 2 Review
15-110 – Friday 03/26



Announcements

• Hw4 due Monday noon (midsemester surveys due then as well!)
• Read the instructions carefully! The programming questions are a little more advanced, but we 

provide a lot of advice for how to structure the algorithms.

• Quiz3 grades released
• Median = 89 – well done!
• There are an unusually high number of low scores. If you scored < 70, strongly consider talking to 

your TA or Prof. Kelly about course resources.



Agenda

• Unit Overview

• Hashed Search

• Coding with Graphs

• Lecture 1:
• Big-O

• Coding with Recursion

• Lecture 2:
• Breadth-First Search / Depth-First Search

• List syntax



Unit 2 Overview



Unit 2 Goals

Our second unit had two major goals: use various data structures to 
organize data and calculate the efficiency of a variety of algorithms.

How did the topics we discussed fit into these themes?



Data Structures

We discussed several different ways to organize data in a data structure. All 
of these (except for strings) use references when copying data to let us 
change the values in the structure directly and to save space.

• Strings are a sequence of characters that we can access with indexing and 
slicing with "" syntax

• Lists store data sequentially and in multiple dimensions if needed with [] 
syntax

• Dictionaries store key-value pairs with {} syntax
• Trees store hierarchical data using recursion, implemented as a nested 

dictionary
• Graphs store connected data, implemented as a dictionary mapping 

nodes to lists of neighbors



Efficiency

We also discussed the efficiency of different algorithms. We abstracted away 
questions of computer power and specific implementation with the concept of Big-
O notation, which represents an algorithm's function family.

We discussed a set of search algorithms over varying data structures. This included 
linear search for lists, binary search for lists and BSTs, hashed search for 
dictionaries, and BFS/DFS for graphs.

We also discussed how to improve efficiency with hashed search and with merge 
sort.

Finally, we discussed how the tractability of an algorithm influences its ability to 
run in 'reasonable' time on large sets of data.



Upcoming Topics

In the next unit, we'll talk about how to deal with inefficient algorithms 
by scaling up the amount of computing power used to run algorithms.

We'll then move on to a unit where we address how to apply computer 
science to other domains.



Hashed Search



Big Idea

Why do we care about hash functions?

We search all the time, so we want the fastest possible search. Storing 
items in a hashtable lets us look up whether or not an item is in the 
table in O(1) time. You can't get faster than that!

How can we search in constant time? The algorithm needs to know 
where the value it's looking for will be stored if that value is actually in 
the table.



Hashtables

A hashtable is like a big, empty list of a designated size. Like in a list, 
each slot ('bucket') in the table is associated with an integer index, 
from 0 to len(table)-1.

When we want to put a value in the hashtable, we insert it at a specific 
index based on the result of a hash function.

0 1 2 3 4 5 6 7 8 9



Hash Functions

A hash function is a function that maps Python values to integers. 
Those integers can then be used to find an index in the hashtable to 
store the value.

We can use the built-in Python hash() function or write our own. 
Either way, the hash function must follow two rules:

• The value returned when hash is called on x must not change across 
calls

• The function should usually return different numbers when called 
on different values



Storing/Finding Values in Hashtables

Both storing a value in a hashtable and checking whether a value is in a 
hashtable follow the same procedure to get the index to check.

1. Run the hash function on the value to get the hashed value.
2. If the hashed value is larger than the hashtable size, mod it by the 

hashtable size

Let's practice with some strings and the built-in hash function.

0 1 2 3 4 5 6 7 8 9



Why O(1)?

Why is looking up a value in a hashtable O(1) time?

We don't need to check every bucket in the hashtable. Only look in one 
bucket- the one with the index associated with the hashed value.

Important: this only works if the value we're searching for can't change 
(immutable) and if the hashtable is large enough for the stored values 
to spread out.



Coding With Graphs



Consider which nodes/edges you need to check

When coding with graphs, we often end up in one of two scenarios.

Scenario 1: we need to look at all the nodes and edges in the graph 
systematically

finding the most popular person, or the shortest edge

Scenario 2: we need to look at some of the nodes and edges of the graph, 
based on some node that is provided as a starting place

identifying nearby neighbors, or seeing if there's a path from A to B



Scenario 1: Fully-Connected Graphs

We've talked before about 
how the worst-case 
scenario for graphs is often 
a fully-connected graph, 
one where every pair of 
nodes is connected. How 
can we tell if a graph has 
this property?

This falls into Scenario 1. 
Loop over every node, then 
check if every other node is 
in that node's neighbors.

def fullyConnected(g):

for node in g:

neighbors = g[node]

for anotherNode in g:

if anotherNode != node and \

anotherNode not in neighbors:

return False

return True
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Scenario 2: Triads

We've shown how to tell whether 
two nodes are connected, but how 
can we tell if three nodes are all 
connected into each other? More 
specifically, if we're given a node, 
can we tell whether it's part of a 
connected triad?

This falls into Scenario 2 – we only 
need to look at a subset of the 
nodes and edges. Look at all pairs 
of the immediate neighbors of the 
given node and see if any are 
connected to each other.

def findTriad(g, node):

for neighbor in g[node]:

for otherNeighbor in g[node]:

if neighbor != otherNeighbor and \

otherNeighbor in g[neighbor]:

return [node, neighbor, otherNeighbor]

return None
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Big-O
Lecture 1 only



Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we have to 
specify what it is we’re counting. Some popular choices:

• comparisons:  target == lst[i]

• assignments:   y[i+1] = x[i]

• recursive calls:  recSearch(tree["left"], target)

• all 'actions' in the program (all of the above, plus more)



Big-O Essentials: Find the Dominant Term

When calculating Big-O, we don't care about linear coefficients. An 
algorithms that makes 3n comparisons is considered just as fast as an 
algorithm that makes 2n comparisons: both are O(n).

Only the dominant term matters:

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) < O(n!)



Big-O Essentials: Mind the Exponent

O(nk) is polynomial in n and considered tractable, because k is constant

O(kn) is exponential in n and considered "slow" (intractable) because n 
is variable



Big-O Essentials: Look for a Pattern

Any algorithm that processes each element once is O(n).

• Add up the elements of a list

• Sum the numbers from 1 to N

• See if a list contains an odd number

• Find the index of the first even number



Big-O Essentials: When is an algorithm O(n2)?

Doing an O(n) operation on every element of a list means the total 
operations is O(n2).

Common example: nested for loops that are both O(n):

for i in range(len(lst)):

for j in range(i+1, len(lst)):

if lst[i] == lst[j]:

print(lst[i], "is duplicated")



When is an algorithm O(n2)?

An algorithm can be O(n2) even if it has just one loop!

for i in range(len(lst)):

if lst[i] in lst[i+1:]:

print(lst[i], "is duplicated")

The in test is itself O(n) and its inside a for loop that does n iterations, 
so the algorithm is O(n2).



When is an algorithm O(log n)?

If we cut the problem size in half each time and only consider one of the 
halves, we can make log2(n) such cuts, so the algorithm is O(log n).

For example, binary search cuts the list in half each time, so its O(log n).

Suppose we want the first digit of a long number:

while n > 9:
n = n // 10

This code makes log10(n) divisions, so it's O(log n).



When is an algorithm O(2n)?

If we have a recursive algorithm operating on an input of size n and 
each call makes two recursive calls of size n-1, then the algorithm is 
O(2n). The number of calls doubles every time we increase the size by 
1.

def abCombos(n, s):
if n == 0:

print(s)
else:

abCombos(n-1, s + "a") # first recursive call
abCombos(n-1, s + "b") # second recursive call



When is an algorithm O(2n)?

If we have a recursive algorithm and each call produces a result twice 
as long as the previous result, then the algorithm is O(2n).

def allSubsets(lst):
if lst == [ ]:

return [ lst ]
else:

result = [ ]
subsets = allSubsets(lst[1:])
for s in subsets:

result.append(s)
result.append([ lst[0] ] + s)

return result



Coding with Recursion
Lecture 1 only



Big Idea

The core idea of recursion is that we can solve problems by delegating
most of the work instead of solving it immediately.

This works because we make the input to the problem slightly smaller
every time the function is called. That means it will eventually hit a 
base case, where the answer is known right away.

Once the base case returns a value, all the recursive calls can start 
returning their own values up the call stack until they reach the initial 
call.



Writing Recursive Code: findNext

When working with recursive code, it often 
helps to think abstractly about how to solve 
the problem with delegation before 
jumping into coding.

For example: what if we wanted to modify 
our search approach to find the item that 
occurs after the item we're looking for?

We want to start with an approach similar 
to our regular search – have base cases for 
when we find the item, and when we don't. 
And recurse by checking the rest of the list.

def findNext(lst, target):

if len(lst) <= 1:

return None

elif lst[0] == target:

return lst[1]

else:

return findNext(lst[1:], target)



Recursion with Trees

Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree – the child is at the root, their parents are the node's 
children, etc.

32

root

leaf



Advanced Example: getPastGen

Let's write a function that finds all 
the child's ancestors from N 
generations ago. N=1 would be 
their parents; N=2 would be 
grandparents; etc.

Note that for this problem, our 
base case is not a leaf- it's when 
we reach the generation we're 
looking for.

def getPastGen(t, n):

if n == 0:

return [ t["contents"] ]

else:

gen = [ ]

if t["left"] != None:

gen += getPastGen(t["left"], n-1)

if t["right"] != None:

gen += getPastGen(t["right"], n-1)

return gen
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Breadth-First Search / Depth-First 
Search
Lecture 2 only



Breadth-First vs Depth-First Search

Both BFS (Breadth-First Search) and DFS (Depth-First Search) share a 
common goal: they need to find if there's a path between a given start node 
and a given target node in a graph.

In BFS, you start with the nodes connected to the start node and slowly 
move outwards. It's like how might search for a tiny fallen item- start close to 
where you're standing, then move outwards.

In DFS, you go outwards rapidly, backtracking when necessary. It's like how 
you solve a hedge maze- go all the way down one path, then go back when it 
doesn't work.



BFS Example – Start from A
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DFS Example – Start from A

A

B

C

D

E

F

G

H



Tracing Graph Search Code

def breadthFirstSearch(g, start, target):
visited = [ ]
nextNodes = [ start ]

while len(nextNodes) > 0:
next = nextNodes[0]

if next == target: 
return True

else:
for node in g[next]:

if node not in visited and \
node not in nextNodes:
nextNodes = nextNodes + [ node ]

nextNodes.remove(next)
visited.append(next)

return False
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Tracing Graph Search Code
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def depthFirstSearch(g, start, target):
visited = [ ]
nextNodes = [ start ]

while len(nextNodes) > 0:
next = nextNodes[0]

if next == target:
return True

else:
for node in g[next]:

if node in nextNodes:
nextNodes.remove(node)

if node not in visited and \
node not in nextNodes:
nextNodes = [ node ] + nextNodes

nextNodes.remove(next)
visited.append(next)

return False

visited:

nextNodes:



List Syntax
Lecture 2 only



Constructing lists

We can construct a 1D list using square brackets with commas 
separating values. For example:

[ 2, 4, 8 ]

To construct a 2D (two-dimensional) list, just put lists inside of lists!

[ [ 1 ], [ 2, 3 ], [ 4, 5, 6 ] ]



Adding elements to lists

We usually add elements to lists using either a method or concatenation.

When we use lst.append(x), x is added as an element inside the list.

lst = [ 1, 2, 3 ]

lst.append(4) # lst = [ 1, 2, 3, 4 ]

When we use lst = lst + x, the elements inside x are added to the list. x must be a list itself.

lst = [ 1, 2, 3 ]

lst = lst + [ 4, 5 ] # lst = [ 1, 2, 3, 4, 5 ]

What happens if we append a list? We get a 2D list!

lst = [ 1, 2, 3 ]

lst.append([ 4, 5 ]) # lst = [ 1, 2, 3, [ 4, 5 ] ]



Loop by Index vs Loop by Element

When we want to loop over everything in the list, we can use one of two approaches.

Loop by index generates every index in the list. We can then use indexing to get the value 
at that location.

for i in range(len(lst)):

item = lst[i]

print(item)

Loop by element generates every element in the list directly. We do less work, but have no 
information about the element's location or what is around it.

for item in lst:

print(item)



Looping over 2D lists

We can also use either loop approach to loop over a 2D list. Again, choose your loop based 
on whether or not you need information about the item's location.

for i in range(len(lst)):

innerList = lst[i]

for j in range(len(innerList)):

item = innerList[j] # can also do lst[i][j] directly

print(item)

for innerList in lst:

for item in innerList:

print(item)



Agenda

• Unit Overview

• Hashed Search

• Coding with Graphs
• Lecture 1:

• Big-O
• Coding with Recursion

• Lecture 2:
• Breadth-First Search / Depth-First Search
• List syntax

• Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

