
Tractability
15-110 – Wednesday 03/24

Announcements

• Quiz3 is today

• 55% response rate on midsemester surveys so far – don't forget to
complete by next Monday at noon!
• Course: https://forms.gle/qed2Aaeq5H6mFsvs9

• TA: https://forms.gle/wRdvfeQHF2TeQ1r29

2

https://forms.gle/qed2Aaeq5H6mFsvs9
https://forms.gle/wRdvfeQHF2TeQ1r29

Learning Goals

• Identify brute force approaches to common problems that run in O(n!),
including solutions to Travelling Salesperson and puzzle-solving

• Identify brute force approaches to common problems that run in O(2n),
including solutions to subset sum and exam scheduling

• Define whether a function family is tractable or intractable

• Define the complexity classes P and NP and explain why they are important

3

Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still need
to answer two big questions:

Where is the dividing line between efficiency and inefficiency?

Can all algorithms be made efficient?

To answer these questions, consider a collection of computational
problems.

4

Computationally Difficult
Problems

5

Example: Travelling Salesperson Problem

First, consider the Travelling
Salesperson problem.

The program is given a graph that
represents a map – nodes are cities,
edges are distances between cities.

The goal is to find the shortest possible
route that visits every city, then returns
home.

Practical applications: plan a route for a
postal worker.

6

One Solution: Check All Paths

Intuitive algorithm: try every possible
route from the starting city across all the
others, then choose the shortest route of
them all.

For example, starting from Pittsburgh in
the graph to the right we have three
possible first-stops. Each of those has two
second-stop options, leading to six total
possibilities.

When we compare the routes, the shortest
route is PIT->DC->BALT->PHIL->PIT (or its
reverse, PIT->PHIL->BALT->DC->PIT).

7

Brute Force Algorithms

This type of approach is called a brute force approach. Brute force
algorithms are simple: you just generate every possible solution and check
each of the generated solutions to see if any of them work based on the
problem's constraints.

Brute force algorithms are easy to understand, implement, and test. They
also apply to a wide range of problems, which makes them versatile.

However, brute force algorithms have one major drawback: their efficiency.

8

Brute Force Efficiency

Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2)
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them,
but the intuitive algorithm takes a long time. Let's go through some examples.

9

Example: Puzzle Solving

Say we want to solve a basic puzzle by
putting together square pieces (like the
ones shown to the right) so that any
two pieces that are touching each other
make a figure with a head and feet of
the same color.

To make this even simpler, let's make a
rule that pieces cannot be rotated and
the final result must be a m x m square.

Here's our question: given a set of
pieces, is it possible to make a solution
that follows these rules?

10

Brute Force on Puzzle Solving

We can again use brute force to
solve the puzzle problem, just like
we did with Travelling
Salesperson. We can do this by
trying all possible pieces for each
location.

In the example to the right there
are 9 options for the first position,
8 for the second, 7 for the third,
etc.... it's O(n!) time again.

11

9 choices 8 choices 7 choices

6 choices 5 choices 4 choices

3 choices 2 choices 1 choice

O(n!) is Really Bad

It turns out that O(n!) is a really bad runtime. For example, let's assume that
it takes 1 millisecond (1/1000th of a second) to set up a specific ordering of
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.

12

Example: Subset Sum

In the problem Subset Sum we are given a list of
numbers and a target number, x. We want to
determine if there's a subset of the list that
sums to x.

Brute force solution: generate all possible
subsets, see if any of them sum to x.

How do we generate all subsets? Use recursion!
If we have all four subsets of the list [2, 3] we
can use them to create all 8 subsets of [1, 2, 3].
For each subset, make one version that includes
1, and one version that doesn't.

We double the number of subsets with each
new number that is added- this is O(2n).

Subsets of [1, 2, 3]:

• []

• [1]

• [2]

• [1, 2]

• [3]

• [1, 3]

• [2, 3]

• [1, 2, 3]

13

Subsets of [2, 3]:

• []

• [2]

• [3]

• [2, 3]

Example: Boolean Satisfiability

A similar problem commonly encountered
in computer science, called Boolean
Satisfiability, asks: for a given circuit with n
inputs (X1 to Xn), is there a set of
assignments of Xi to 0 or 1 that makes the
whole circuit output 1?

Instead of generating all possible subsets,
we generate all possible combinations of
input values (like generating a truth table!).

This also doubles every time we add a new
input as we must try all possible
combinations with the input set to 0, then
set to 1. It's still O(2n).

Inputs for 2 elements

• 0, 0

• 0, 1

• 1, 0

• 1, 1

14

Inputs for 3 elements

• 0, 0, 0

• 0, 0, 1

• 0, 1, 0

• 0, 1, 1

• 1, 0, 0

• 1, 0, 1

• 1, 1, 0

• 1, 1, 1

Real-life Example: Exam Scheduling

Here's one final example: scheduling final
exams. Given a list of classes, a dictionary
mapping students to their classes, and a list of
timeslots over the period of a week, generate a
schedule that fits within the period and results
in no student having two exams in the same
slot.

We can generate all possible schedules using a
similar approach to subset sum. Then we just
need to look for one schedule that has no
conflicts by checking every student. However,
every time we add a new class we need to try
adding it to every possible schedule in every
possible timeslot.

If we say there are k timeslots (where k is some
constant number) and n classes, we turn one
schedule into k different schedules for every
new class added. This is O(kn)! 15

O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want
to solve the subset sum problem and it again takes us 1 millisecond to
generate a specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.

16

Tractability

This leads us to a new concept: tractability. A
problem is said to be tractable if it has a
reasonably efficient runtime so that we can use
it for practical input sizes.

We say that a runtime is reasonable if it can be
expressed as a polynomial equation. This
means an equation of the form:

ckx
k + ck-1xk-1 + ... + c1x + c0

where x is a variable and ci & k are constants.

O(1), O(log n), O(n), O(n log n), O(n2), and O(nk)
are all tractable. O(2n), O(kn), and O(n!) are not-
they're intractable.

We can see the difference in growth quickly
using the graph to the right.

17

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Runtimes of Function Families

O(n) O(n^2) O(n^3) O(2^n) O(n!)

Sidebar: Improving Algorithms

For each of the problems we discussed, we can try to be clever and shave some time off by
improving the algorithm.

Example: in subset sum we could sort the list and add the numbers from smallest to largest, keeping
track of the intermediate sums. If the sum becomes larger than the target, we can stop generating
new sublists from the too-big sublist.

Another example: for the puzzle, we can keep an eye on bordering pieces as we add them. As soon
as we add a piece that doesn't match the pieces it touches, we can go back and try something
different.

This kind of improvement does help, but it tends to shave off a constant or polynomial amount of
time. In the worst case, the runtime is still intractable.

We can also improve efficiency by sacrificing some accuracy using heuristics. We'll talk about this
more much later in the semester.

18

Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and
how that algorithm would be affected by increasing the input size, you
can often determine whether the solution will be tractable or
intractable without digging deeply into the exact runtime.

You do:

• solve a Sudoku puzzle by trying every possible combination of
numbers. Is that tractable or intractable?

• check every pair of elements in a list to see if there are any duplicates.
Is that tractable or intractable?

19

Complexity Classes

20

Goal: Find Tractable Solutions

Now we know just how bad the brute-force solutions to this set of
problems are when it comes to efficiency. Maybe we can design a
different algorithm that doesn't require us to generate every possible
answer.

That will be our goal for the rest of the lecture: to see if we can find a
tractable solution to these hard problems.

Until now, we've only discussed how long it takes to find the solution to
a problem. Let's take a different approach.

21

Magical Schedule-Making Box

Suppose a magical black box descends
from the sky onto campus one day.

Someone discovers that if you feed the
box a list of all the classes in a semester,
all the final exam timeslots, and every
student's schedule, the box will spit out
a final exam schedule for CMU.

If CMU has n classes, how long would it
take us to check if this schedule has
any conflicts in it?

22

Verifying a Final Exam Schedule

For every student, we need to go through all pairs of their classes to see if
any of their classes are in the same timeslot. Each student is likely enrolled in
no more than 5 classes, so that's a constant number of checks – 10.

How many students are there? We can probably find a constant relation
between the number of classes in a semester and the number of students
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10
work. That's 60n, which is O(n). Verifying the solution is tractable!

23

Oracles

In computer science, we call the magical schedule-producing box an
oracle. In ancient Greece, an oracle was a person who would make
predictions about the future. In computer science, an oracle is a
hypothetical algorithm that can produce a solution to a problem in a
reasonable amount of time.

Oracles let us consider what we could do with a solution if one was
produced quickly for us.

24

Complexity Classes

Now that we've talked about both solving and verifying problems, we can
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems
that have similar efficiency. Specifically, we say that every algorithm in a
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only
includes algorithms which run in O(n) time or faster. This would also include
O(log n) and O(1).

25

Complexity Class P

First we define the complexity class P
to be the set of problems that we
know can be solved in polynomial
time. Recall that an algorithm is
polynomial if it can be expressed as:
ckx

k + ck-1xk-1 + ... + c1x + c0

Our earlier examples (subset sum,
puzzle solving, exam scheduling)
don't fall into this category yet. But
plenty of other algorithms do- linear
search, selection sort, etc.

26

P

linear search

selection sort

Complexity Class NP

Next we define the complexity class NP
to be the set of problems that can be
verified in polynomial time.

This includes all problems in P- if you
can solve something in polynomial time,
you can check it as well.

It also includes most of the problems we
discussed before! We already showed
that we can check exam scheduling in
linear time. We can also check subset
sum, Boolean satisfiability, and puzzle
solving this way.

27

NP

P

linear search

selection sort

subset sum

Boolean
satisfiability

puzzle solving

exam
scheduling

All problems

Not all Problems are in P or NP

Some problems are so difficult we can't
even verify them in polynomial time.

Travelling Salesperson is an example of
this. If we're given a solution, we can't
verify that it's the best path- it's just
one possible path that exists. In general,
trying to find the 'best' solution takes a
long time to verify.

We can turn Travelling Salesperson into
an NP problem by changing the prompt:
instead of finding the best path, just try
to find a path that is less than X total
distance for some number X. This is easy
to verify.

28

NP

P

linear search

selection sort

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

P vs NP

29

Big Question: Does P = NP?

Here's our big idea for the day.
Wouldn't it be nice if the set of
problems P was the same as the set
of problems NP?

If this was true we could find an
algorithm that would put together
CMU's final exam schedule in a day
instead of waiting half a semester to
find out when exams will happen.
We'd be able to solve a lot of hard
problems really quickly!

30

All problems

linear search

selection sort

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

NP

P

P and NP ?

Does P = NP? We Don't Know.

Whether or not P = NP is a core question in the field of computer
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million
dollars, but no one has proved it yet...

31

https://www.claymath.org/millennium-problems

Proving P != NP

Let's assume that P != NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that cannot
be solved in polynomial time. But how can we show that it's impossible
to come up with a clever new algorithm?

This is tricky!

32

Proving P = NP

Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that
are related to each other.

33

Transforming Problems

Consider subset sum and Boolean
satisfiability. We can transform subset
sum into satisfiability. We just need to
make a circuit that uses each value in
the list as an input (0 if it isn't included,
1 if it is) and make the circuit output 1 if
the included values sum to the target.

In fact, this mapping can be done in
polynomial time. This means that if we
can find a tractable solution to Boolean
satisfiability, we can also use it to make
a tractable solution to subset sum.

34

Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks
if sum = 8

Useful NP Problems

Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable
solution to one of them, we can make all problems in NP tractable. That will
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem,
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove
P = NP and will become rich and famous.

35

Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard
problems very quickly. NP problems
show up everywhere, so nearly
everything in the world will get
radically faster!

On the other hand, this might also
wreck how modern security and
encryption is implemented (as it will
get easier to break cryptography).

What happens if we prove P != NP?

Not much; we'll still have to use slow
or good-enough solutions to hard
problems. But a lot of computer
scientists can turn their focus to
other problems.

Most people think P != NP, but we
don't know how to prove it.

36

Unit 2 Review on Friday

In Friday's lecture we'll review Unit 2.

[This will be after Quiz3, but it will still happen before Quiz4!]

Fill out the following poll to suggest topics you'd like to review:
https://forms.gle/cMCCERKXoAcvYxT87

37

https://forms.gle/cMCCERKXoAcvYxT87

Learning Goals

• Identify brute force approaches to common problems that run in O(n!), including
solutions to Travelling Salesperson and puzzle-solving

• Identify brute force approaches to common problems that run in O(2n), including
solutions to subset sum and exam scheduling

• Define whether a function family is tractable or intractable

• Define the complexity classes P and NP and explain why they are important

• Feedback: http://bit.ly/110-s21-feedback

38

http://bit.ly/110-s21-feedback

