Tractability

15-110 — Wednesday 03/24



* Quiz3 is today

* 55% response rate on midsemester surveys so far — don't forget to
complete by next Monday at noon!
e Course: https://forms.gle/ged2Aaeq5H6mFsvs9
* TA: https://forms.gle/wRdvfeQHF2TeQ1r29



https://forms.gle/qed2Aaeq5H6mFsvs9
https://forms.gle/wRdvfeQHF2TeQ1r29

* |dentify brute force approaches to common problems that run in O(n!),
including solutions to Travelling Salesperson and puzzle-solving

* |dentify brute force approaches to common problems that run in O(2"),
including solutions to subset sum and exam scheduling

* Define whether a function family is tractable or intractable

* Define the complexity classes P and NP and explain why they are important



As we wrap up the unit on data structures and efficiency, we still need
to answer two big questions:

Where is the dividing line between efficiency and inefficiency?
Can all algorithms be made efficient?

To answer these questions, consider a collection of computational
problems.



Computationally Difficult
Problems



First, consider the Travelling
Salesperson problem.

The program is given a graph that
represents a map — nodes are cities,
edges are distances between cities.

The goal is to find the shortest possible
Loute that visits every city, then returns
ome.

Practical applications: plan a route for a
postal worker.




Intuitive algorithm: try every possible
route from the starting city across all the
others, then choose the shortest route of
them all.

For example, starting from Pittsburgh in
the graph to the right we have three
possible first-stops. Each of those has two
second-stop options, leading to six total
possibilities.

When we compare the routes, the shortest
route is PIT->DC->BALT->PHIL->PIT (or its
reverse, PIT->PHIL->BALT->DC->PIT).
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Washington DC

Pittsburgh
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This type of approach is called a brute force approach. Brute force
algorithms are simple: you just generate every possible solution and check

each of the generated solutions to see if any of them work based on the
problem's constraints.

Brute force algorithms are easy to understand, implement, and test. They
also apply to a wide range of problems, which makes them versatile.

However, brute force algorithms have one major drawback: their efficiency.



Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2)
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them,
but the intuitive algorithm takes a long time. Let's go through some examples.



Say we want to solve a basic puzzle by
putting together square pieces (like the
ones shown to the right) so that any
two pieces that are touching each other
make a figure with a head and feet of
the same color.

To make this even simpler, let's make a
rule that pieces cannot be rotated and
the final result must be a m x m square.

Here's our question: given a set of
pieces, is it possible to make a solution
that follows these rules?
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We can again use brute force to

SO

ve the puzzle problem, just like

we did with Travelling

Sa

esperson. We can do this by

trying all possible pieces for each
location.

In the example to the right there

are 9 options for the first position,

8 for the second, 7 for the third,
etc.... it's O(n!) time again.
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It turns out that O(n!) is a really bad runtime. For example, let's assume that
it takes 1 millisecond (1/1000% of a second) to set up a specific ordering of
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.



In the problem Subset Sum we are given a list of
numbers and a target number, x. We want to
determine if there's a subset of the list that
sums to x.

Brute force solution: generate all possible
subsets, see if any of them sum to x.

How do we generate all subsets? Use recursion!
If we have all four subsets of the list [2, 3] we
can use them to create all 8 subsets of [1, 2, 3].
For each subset, make one version that includes
1, and one version that doesn't.

We double the number of subsets with each
new number that is added- this is O(2").

Subsets of [2, 3]:

(]

2]
3]
2, 3]

Subsets of [1, 2, 3]:

[]
[1]

2]
[1, 2]

3]
[1, 3]

2, 3]
[1,2,3]



A similar problem commonly encountered Inputs for 2 elements Inputs for 3 elements
in computer science, called Boolean

Satisfiability, asks: for a given circuit with n

inputs (X, to X,), is there a set of * 0,00
assignments of X to 0 or 1 that makes the - 0,0,1
whole circuit output 17
- 0,0 - 0,1,0
.+ 0,1 - 0,1,1
Instead of generating all possible subsets, - 1.0
we generate all possible combinations of C 11 . 100
input values (like generating a truth table!). / . 1’ o' .
, _ -+ 1,1,0
This also doubles everY time we add a new C 111
input as we must try all possible ’

combinations with the input set to O, then
set to 1. It's still O(2").



Here's one final example: scheduling final
exams. Given a list of classes, a dictionar

mapping students to their classes, and a Yist of .,

Course Section  Tille Date Time (USA EST) Classroom isﬁ

timeslots over the period of a week, generate a

M M H H 48116 A BUILDING PHYSICS Sunday, December 15, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)

SChedUIe that flts Wlthln the perIOd and reSUItS 48315 1 EMVIR I: CLIM & ENG Thursday, December 12, 2019 08:30 am - 11:30 am TuBeJ\nnDunced;TBf\,\

1 1 1 48432 A ENVI Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)

I n n O St u d e nt h aVI ng tWO eXa m S I n t h e Sa m e 48531 A FABRICATNG CUSTOMZITN Monday, December 9, 2019 01:00 pm - 04:00 pm To Be Announced :TBI\,\

S I Ot 48558 A RLT COMP Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)

° 48568 A ADV CAD BIM 3D VISLZ Tuesday, December 10, 2019 08:30 am - 11:30 am To Be Announced (TBA)

48635 1 ENVIRO | M.ARCH Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)

48655 A ENV 1| GRAD Thursday, December 12, 2019 08:30 am - 11:30 am To Be Announced (TBA)

48714 A DATA ANL URBN DSNG Friday, December 13, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)

. . 48729 A PROD HLTH QUAL BLDGS Thursday, December 12, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)

48734 A RCTV SP MD ARC Friday, December 13, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)

We can generate all possible schedules using a e e

| h t b t Th t 48749 A CD SPECIAL TOPICS Tuesday, December 10, 2019 01:00 pm - 04:00 pm To Be Announced (TBA)

SI m I a r a p ro a C O S u Se S u m : e n We J u S 48785 A MAAD RES PROJ Sunday, December 15, 2019 05:30 pm - 08:30 pm To Be Announced :TBA}

n e e d to 0 O k fo r‘ O n e SC h e d u | e th at h a S n O 48798 A HVAC & PS LOW CARB B Monday, December 9, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)

conflicts by checking every student. However, an

. 60157 A DRAWING NON-MAJORS Tuesday, December 10, 2019 05:30 pm - 08:30 pm CFA TBD

every time we add a new class we need to try 28 A REALTMEANMATON  Mondey Decomber 8 2016 0030 em 1150 am To B Amnounced (194

. . . . 60220 A TECH CHARACTER ANIM Thursday, December 12, 2019 05:30 pm - 08:30 pm To Be Announced (TBA)

a d d I n g It to eve ry pOSS I b I e SC h e d u I e I n eve ry 60220 B TECH CHARACTER ANIM Thursday, December 12, 2019 05:30 pm - 08:30 pm To Be Announced ;TBA}
60333 A CHARACTER RIGGING Sunday, December 15, 2019 08:30 am - 11:30 am BH 140F

possible timeslot.

If we say there are k timeslots (where k is some

constant number) and n classes, we turn one

schedule into k different schedules for every

new class added. This is O(k")! 15



O(2") is a bit better than O(n!), but not that much better. Let's say we want
to solve the subset sum problem and it again takes us 1 millisecond to
generate a specific subset and see if it is equal to the target.

If n =10, we find the solution in 1.024 seconds. Much better!
But if n = 20, we find the solution in 17.48 minutes...
And if n =30, it will take us 12.43 days. By the time n =40, it takes 35 years.

O(2") is not as bad as O(n!), but it's still really bad.



This leads us to a new concept: tractability. A
problem is said to be tractable if it has a

reasonably efficient runtime so that we can use Runtimes of Function Eamilies
it for practical input sizes.
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We say that a runtime is reasonable if it can be
expressed as a polynomial equation. This
means an equation of the form: o

Cka + ck_lxk‘l + ...+ C.X + Co 4000
where x is a variable and ¢, & k are constants.
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O(l)l O(Iog ng)’ O(n)l O(n Iog n)l O(nzzl and O(nk) ’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
are all tractable. O(2"), O(k"), and O(n!) are not-
they're intractable.

e O (n) 0O(n"2) 0O(n”"3) 0(27n) O(n!)

We can see the difference in growth quickly
using the graph to the right.



For each of the ‘oroblems we discussed, we can try to be clever and shave some time off by
improving the algorithm.

Example: in subset sum we could sort the list and add the numbers from smallest to largest, keeping
track of the intermediate sums. If the sum becomes larger than the target, we can stop generating
new sublists from the too-big sublist.

Another example: for the puzzle, we can keep an eye on bordering pieces as we add them. As soon
as we add a piece that doesn't match the pieces it touches, we can go back and try something

different.

This kind of improvement does help, but it tends to shave off a constant or polynomial amount of
time. In the worst case, the runtime is still intractable.

We can also improve efficiency by sacrificing some accuracy using heuristics. We'll talk about this
more much later in the semester.



If you consider how a brute-force solution generates solutions, and
how that algorithm would be affected by increasing the input size, you
can often determine whether the solution will be tractable or
intractable without digging deeply into the exact runtime.

You do:

* solve a Sudoku puzzle by trying every possible combination of
numbers. Is that tractable or intractable?

* check every pair of elements in a list to see if there are any duplicates.
Is that tractable or intractable?



Complexity Classes



Now we know just how bad the brute-force solutions to this set of
problems are when it comes to efficiency. Maybe we can design a
different algorithm that doesn't require us to generate every possible

danswetr.

That will be our goal for the rest of the lecture: to see if we can find a
tractable solution to these hard problems.

Until now, we've only discussed how long it takes to find the solution to
a problem. Let's take a different approach.



Suppose a magical black box descends
from the sky onto campus one day.

Someone discovers that if you feed the
box a list of all the classes in a semester,
all the final exam timeslots, and every
student's schedule, the box will spit out
a final exam schedule for CMU.

If CMU has n classes, how long would it
take us to check if this schedule has
any conflicts in it?

\

Semester & Min

Final Exams: December

10, 12, 13, 15 & 16(Make-Up Day)

Tourse

Tection

Tl

Bate.

Time (USA F5T)

Chassroom(s)

Architecture
48116
48315
48432
48531
48558
48568
48635
48655
48714
48729
48734
48743
48749
48785
48798

Art
60157
60218
60220
60220
60333
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BUILDING PHYSICS
ENVIR |- CLIM & ENG
ENV Il

FABRICATNG CUSTOMZTN
RLT COMP

ADV CAD BIM 3D VISLZ
ENVIRO | MARCH

ENV Il GRAD

DATA ANL URBN DSNG
PROD HLTH QUAL BLDGS
RCTV SP MD ARC

INTRO ECO DES

€D SPECIAL TOPICS
MAAD RES PROJ

HVAC & PS LOW CARB B

DRAWING NON-MAJORS
REAL-TIME ANIMATION
TECH CHARACTER ANIM
TECH CHARACTER ANIM
CHARACTER RIGGING

Sunday, December 15, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Monday, December 9, 2019
Thursday, December 12, 2019
Tuesday, December 10, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Friday, December 13, 2019
Thursday, December 12, 2019
Friday, December 13, 2019
Friday, December 13, 2019
Tuesday, December 10, 2019
Sunday, December 15, 2019
Monday, December 9, 2019

Tuesday, December 10, 2019
Monday, December 9, 2019
Thursday, December 12, 2019
Thursday, December 12, 2019
Sunday, December 15, 2019

07100 pm - 0400 pm
08:30 am - 11:30 am
08:30 am - 11:30 am
0100 pm - 04:00 pm
08:30 am - 11:30 am
08:30 am - 11:30 am
08:30 am - 11:30 am
08:30 am - 11:30 am
01:00 pm - 04:00 pm
01:00 pm - 04:00 pm
05:30 pm - 08:30 pm
01:00 pm - 0400 pm
01:00 pm - 04:00 pm
05:30 pm - 08:30 pm
0530 pm - 0830 pm

05:30 pm - 08:30 pm
08:30 am - 11:30 am
05:30 pm - 0830 pm
05:30 pm - 0830 pm
08:30 am - 11:30 am

To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)

CFATED
To Be Announced (TBA)
To Be Announced (TBA)
To Be Announced (TBA)
BH 140F



For every student, we need to go through all pairs of their classes to see if
any of their classes are in the same timeslot. Each student is likely enrolled in
no more than 5 classes, so that's a constant number of checks — 10.

How many students are there? We can probably find a constant relation
between the number of classes in a semester and the number of students
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10
work. That's 60n, which is O(n). Verifying the solution is tractable!



In computer science, we call the magical schedule-producing box an
oracle. In ancient Greece, an oracle was a person who would make
predictions about the future. In computer science, an oracle is a
hypothetical algorithm that can produce a solution to a problem in a
reasonable amount of time.

Oracles let us consider what we could do with a solution if one was
produced quickly for us.



Now that we've talked about both solving and verifying problems, we can
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems
that have similar efficiency. Specifically, we say that every algorithm in a
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only
includes algorithms which run in O(n) time or faster. This would also include
O(log n) and O(1).



First we define the complexity class P
to be the set of problems that we
know can be solved in polynomial
time. Recall that an algorithm is
polynomial if it can be expressed as:
X<+ X1+ L +ex+c

Our earlier examples (subset sum,
puzzle solving, exam scheduling)
don't fall into this category yet. But
plenty of other algorithms do- linear
search, selection sort, etc.

linear search

selection sort



Next we define the complexity class NP
to be the set of problems that can be
verified in polynomial time.

exam
This includes all problems in P- if you scheduling
can solve something in polynomial time,
you can check it as well. subset sum
It also includes most of the problems we Boolean .
discussed before! We already showed satisfiability puzzle solving

that we can check exam scheduling in
linear time. We can also check subset
sum, Boolean satisfiability, and puzzle
solving this way.

selection sort

linear search



Some problems are so difficult we can't

' i ial ti Travelli
even verify them in polynomial time. ravelling

Salesperson

All problems

. . exam
Travelling Salesperson is an example of

this. If we're given a solution, we can't ~ scheduling
verify that it's the best path- it's just

one possible path that exists. In general, ~ Subsetsum
trying to find the 'best’ solution takes a

long time to verify.

Less-Than-X
Travelling
Salesperson

Boolean

uzzle solvin
satisfiability g 5

We can turn Travelling Salesperson into
an NP problem by changing the prompt:
instead of finding the best path, just try
to find a path that is less than X total
distance for some number X. This is easy linear search
to verify.

selection sort



P vs NP



Here's our big idea for the day.
Wouldn't it be nice if the set of
problems P was the same as the set
of problems NP?

If this was true we could find an
algorithm that would put together
CMU's final exam schedule in a day
instead of waiting half a semester to
find out when exams will happen.
We'd be able to solve a lot of hard
problems really quickly!

exam
scheduling

subset sum

Boolean
satisfiability

linear search

All problems

Travelling
Salesperson

Less-Than-X
Travelling
Salesperson

puzzle solving

selection sort



Whether or not P = NP is a core question in the field of computer
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million
dollars, but no one has proved it yet...



https://www.claymath.org/millennium-problems

Let's assume that P != NP. How would we prove this?

You'd need to C
be solved in po

efinitively prove that a problem in NP exists that cannot
ynomial time. But how can we show that it's impossible

to come up wit

This is tricky!

" a clever new algorithm?



Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that
are related to each other.



Consider subset sum and Boolean :
satisfiability. We can transform subset ind a subset of | I that sums to

sum into satisfiability. We just need to
make a circuit that uses each value in
the list as an input (0 if it isn't included,

1if it is) and make the circuit output 1 if Set the inputs so that the circuit outputs 1
the included values sum to the target. S

In fact, this mapping can be done in A=

polynomial time. This means that if we Circuit that checks

]

can find a tractable solution to Boolean
satisfiability, we can also use it to make
a tractable solution to subset sum. =

if sum=8

il




Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable
solution to one of them, we can make all problems in NP tractable. That will
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem,
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove
P = NP and will become rich and famous.



What happens if we prove P = NP?

We'll be able to solve a lot of hard
problems very quickly. NP problems
show up everywhere, so nearly
everything in the world will get
radically faster!

On the other hand, this might also
wreck how modern security and
encryption is implemented (as it will
get easier to break cryptography).

What happens if we prove P = NP?

Not much; we'll still have to use slow
or good-enough solutions to hard
problems. But a lot of computer
scientists can turn their focus to
other problems.

Most Eeople think P I= NP, but we
don't know how to prove it.



In Friday's lecture we'll review Unit 2.
[This will be after Quiz3, but it will still happen before Quiz4!]

Fill out the following poll to suggest topics you'd like to review:
https://forms.gle/cMCCERKXoAcvYXT87

37


https://forms.gle/cMCCERKXoAcvYxT87

Identify brute force approaches to common problems that run in O(n!), including
solutions to Travelling Salesperson and puzzle-solving

Identify brute force approaches to common problems that run in O(2"), including
solutions to subset sum and exam scheduling

Define whether a function family is tractable or intractable

Define the complexity classes P and NP and explain why they are important

Feedback: http://bit.ly/110-s21-feedback



http://bit.ly/110-s21-feedback

