
Tractability
15-110 – Wednesday 03/24



Announcements

• Quiz3 is today

• 55% response rate on midsemester surveys so far – don't forget to 
complete by next Monday at noon!
• Course: https://forms.gle/qed2Aaeq5H6mFsvs9

• TA: https://forms.gle/wRdvfeQHF2TeQ1r29
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Learning Goals

• Identify brute force approaches to common problems that run in O(n!), 
including solutions to Travelling Salesperson and puzzle-solving

• Identify brute force approaches to common problems that run in O(2n), 
including solutions to subset sum and exam scheduling

• Define whether a function family is tractable or intractable

• Define the complexity classes P and NP and explain why they are important
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Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still need 
to answer two big questions:

Where is the dividing line between efficiency and inefficiency?

Can all algorithms be made efficient?

To answer these questions, consider a collection of computational 
problems.
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Computationally Difficult 
Problems
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Example: Travelling Salesperson Problem

First, consider the Travelling 
Salesperson problem.

The program is given a graph that 
represents a map – nodes are cities, 
edges are distances between cities.

The goal is to find the shortest possible 
route that visits every city, then returns 
home.

Practical applications: plan a route for a 
postal worker.
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One Solution: Check All Paths

Intuitive algorithm: try every possible 
route from the starting city across all the 
others, then choose the shortest route of 
them all.

For example, starting from Pittsburgh in 
the graph to the right we have three 
possible first-stops. Each of those has two 
second-stop options, leading to six total 
possibilities.

When we compare the routes, the shortest 
route is PIT->DC->BALT->PHIL->PIT (or its 
reverse, PIT->PHIL->BALT->DC->PIT).
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Brute Force Algorithms

This type of approach is called a brute force approach. Brute force 
algorithms are simple: you just generate every possible solution and check 
each of the generated solutions to see if any of them work based on the 
problem's constraints.

Brute force algorithms are easy to understand, implement, and test. They 
also apply to a wide range of problems, which makes them versatile.

However, brute force algorithms have one major drawback: their efficiency.
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Brute Force Efficiency

Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path 
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first 
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2) 
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for 
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's 
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them, 
but the intuitive algorithm takes a long time. Let's go through some examples.
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Example: Puzzle Solving

Say we want to solve a basic puzzle by 
putting together square pieces (like the 
ones shown to the right) so that any 
two pieces that are touching each other 
make a figure with a head and feet of 
the same color.

To make this even simpler, let's make a 
rule that pieces cannot be rotated and 
the final result must be a m x m square.

Here's our question: given a set of 
pieces, is it possible to make a solution 
that follows these rules?
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Brute Force on Puzzle Solving

We can again use brute force to 
solve the puzzle problem, just like 
we did with Travelling 
Salesperson. We can do this by 
trying all possible pieces for each 
location.

In the example to the right there 
are 9 options for the first position, 
8 for the second, 7 for the third, 
etc.... it's O(n!) time again.
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6 choices 5 choices 4 choices

3 choices 2 choices 1 choice



O(n!) is Really Bad

It turns out that O(n!) is a really bad runtime. For example, let's assume that 
it takes 1 millisecond (1/1000th of a second) to set up a specific ordering of 
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to 
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.
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Example: Subset Sum

In the problem Subset Sum we are given a list of 
numbers and a target number, x. We want to 
determine if there's a subset of the list that 
sums to x.

Brute force solution: generate all possible 
subsets, see if any of them sum to x.

How do we generate all subsets? Use recursion! 
If we have all four subsets of the list [2, 3] we 
can use them to create all 8 subsets of [1, 2, 3]. 
For each subset, make one version that includes 
1, and one version that doesn't.

We double the number of subsets with each 
new number that is added- this is O(2n).

Subsets of [1, 2, 3]:

• []

• [1] 

• [2]

• [1, 2]

• [3]

• [1, 3]

• [2, 3] 

• [1, 2, 3]
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Subsets of [2, 3]:

• []

• [2]

• [3]

• [2, 3]



Example: Boolean Satisfiability

A similar problem commonly encountered 
in computer science, called Boolean 
Satisfiability, asks: for a given circuit with n 
inputs (X1 to Xn), is there a set of 
assignments of Xi to 0 or 1 that makes the 
whole circuit output 1?

Instead of generating all possible subsets, 
we generate all possible combinations of 
input values (like generating a truth table!).

This also doubles every time we add a new 
input as we must try all possible 
combinations with the input set to 0, then 
set to 1. It's still O(2n).

Inputs for 2 elements

• 0, 0

• 0, 1

• 1, 0

• 1, 1
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Inputs for 3 elements

• 0, 0, 0

• 0, 0, 1

• 0, 1, 0

• 0, 1, 1

• 1, 0, 0

• 1, 0, 1

• 1, 1, 0

• 1, 1, 1



Real-life Example: Exam Scheduling

Here's one final example: scheduling final 
exams. Given a list of classes, a dictionary 
mapping students to their classes, and a list of 
timeslots over the period of a week, generate a 
schedule that fits within the period and results 
in no student having two exams in the same 
slot.

We can generate all possible schedules using a 
similar approach to subset sum. Then we just 
need to look for one schedule that has no 
conflicts by checking every student. However, 
every time we add a new class we need to try 
adding it to every possible schedule in every
possible timeslot. 

If we say there are k timeslots (where k is some 
constant number) and n classes, we turn one 
schedule into k different schedules for every 
new class added. This is O(kn)! 15



O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want 
to solve the subset sum problem and it again takes us 1 millisecond to 
generate a specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.
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Tractability

This leads us to a new concept: tractability. A 
problem is said to be tractable if it has a 
reasonably efficient runtime so that we can use 
it for practical input sizes.

We say that a runtime is reasonable if it can be 
expressed as a polynomial equation. This 
means an equation of the form: 

ckx
k + ck-1xk-1 + ... + c1x + c0

where x is a variable and ci & k are constants.

O(1), O(log n), O(n), O(n log n), O(n2), and O(nk) 
are all tractable. O(2n), O(kn), and O(n!) are not-
they're intractable. 

We can see the difference in growth quickly 
using the graph to the right.
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Sidebar: Improving Algorithms

For each of the problems we discussed, we can try to be clever and shave some time off by 
improving the algorithm.

Example: in subset sum we could sort the list and add the numbers from smallest to largest, keeping 
track of the intermediate sums. If the sum becomes larger than the target, we can stop generating 
new sublists from the too-big sublist.

Another example: for the puzzle, we can keep an eye on bordering pieces as we add them. As soon 
as we add a piece that doesn't match the pieces it touches, we can go back and try something 
different.

This kind of improvement does help, but it tends to shave off a constant or polynomial amount of 
time. In the worst case, the runtime is still intractable.

We can also improve efficiency by sacrificing some accuracy using heuristics. We'll talk about this 
more much later in the semester.
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Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and 
how that algorithm would be affected by increasing the input size, you 
can often determine whether the solution will be tractable or 
intractable without digging deeply into the exact runtime.

You do:

• solve a Sudoku puzzle by trying every possible combination of 
numbers. Is that tractable or intractable?

• check every pair of elements in a list to see if there are any duplicates. 
Is that tractable or intractable?
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Complexity Classes
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Goal: Find Tractable Solutions

Now we know just how bad the brute-force solutions to this set of 
problems are when it comes to efficiency. Maybe we can design a 
different algorithm that doesn't require us to generate every possible 
answer.

That will be our goal for the rest of the lecture: to see if we can find a 
tractable solution to these hard problems.

Until now, we've only discussed how long it takes to find the solution to 
a problem. Let's take a different approach.
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Magical Schedule-Making Box

Suppose a magical black box descends 
from the sky onto campus one day.

Someone discovers that if you feed the 
box a list of all the classes in a semester, 
all the final exam timeslots, and every 
student's schedule, the box will spit out 
a final exam schedule for CMU.

If CMU has n classes, how long would it 
take us to check if this schedule has 
any conflicts in it?
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Verifying a Final Exam Schedule

For every student, we need to go through all pairs of their classes to see if 
any of their classes are in the same timeslot. Each student is likely enrolled in 
no more than 5 classes, so that's a constant number of checks – 10.

How many students are there? We can probably find a constant relation 
between the number of classes in a semester and the number of students 
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10 
work. That's 60n, which is O(n). Verifying the solution is tractable!
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Oracles

In computer science, we call the magical schedule-producing box an 
oracle. In ancient Greece, an oracle was a person who would make 
predictions about the future. In computer science, an oracle is a 
hypothetical algorithm that can produce a solution to a problem in a 
reasonable amount of time.

Oracles let us consider what we could do with a solution if one was 
produced quickly for us.
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Complexity Classes

Now that we've talked about both solving and verifying problems, we can 
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems 
that have similar efficiency. Specifically, we say that every algorithm in a 
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only 
includes algorithms which run in O(n) time or faster. This would also include 
O(log n) and O(1).
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Complexity Class P

First we define the complexity class P 
to be the set of problems that we 
know can be solved in polynomial 
time. Recall that an algorithm is 
polynomial if it can be expressed as: 
ckx

k + ck-1xk-1 + ... + c1x + c0

Our earlier examples (subset sum, 
puzzle solving, exam scheduling) 
don't fall into this category yet. But 
plenty of other algorithms do- linear 
search, selection sort, etc.
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Complexity Class NP

Next we define the complexity class NP 
to be the set of problems that can be 
verified in polynomial time.

This includes all problems in P- if you 
can solve something in polynomial time, 
you can check it as well.

It also includes most of the problems we 
discussed before! We already showed 
that we can check exam scheduling in 
linear time. We can also check subset 
sum, Boolean satisfiability, and puzzle 
solving this way.
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All problems

Not all Problems are in P or NP

Some problems are so difficult we can't 
even verify them in polynomial time.

Travelling Salesperson is an example of 
this. If we're given a solution, we can't 
verify that it's the best path- it's just 
one possible path that exists. In general, 
trying to find the 'best' solution takes a 
long time to verify.

We can turn Travelling Salesperson into 
an NP problem by changing the prompt: 
instead of finding the best path, just try 
to find a path that is less than X total 
distance for some number X. This is easy 
to verify.
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P vs NP
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Big Question: Does P = NP?

Here's our big idea for the day. 
Wouldn't it be nice if the set of 
problems P was the same as the set 
of problems NP?

If this was true we could find an 
algorithm that would put together 
CMU's final exam schedule in a day 
instead of waiting half a semester to 
find out when exams will happen. 
We'd be able to solve a lot of hard 
problems really quickly!
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Does P = NP? We Don't Know.

Whether or not P = NP is a core question in the field of computer 
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million 
dollars, but no one has proved it yet...
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https://www.claymath.org/millennium-problems


Proving P != NP

Let's assume that P != NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that cannot
be solved in polynomial time. But how can we show that it's impossible 
to come up with a clever new algorithm?

This is tricky!

32



Proving P = NP

Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in 
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that 
are related to each other.
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Transforming Problems

Consider subset sum and Boolean 
satisfiability. We can transform subset 
sum into satisfiability. We just need to 
make a circuit that uses each value in 
the list as an input (0 if it isn't included, 
1 if it is) and make the circuit output 1 if 
the included values sum to the target. 

In fact, this mapping can be done in 
polynomial time. This means that if we 
can find a tractable solution to Boolean 
satisfiability, we can also use it to make 
a tractable solution to subset sum.
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Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks 
if sum = 8



Useful NP Problems

Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable 
solution to one of them, we can make all problems in NP tractable. That will 
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem, 
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove       
P = NP and will become rich and famous.
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Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard 
problems very quickly. NP problems 
show up everywhere, so nearly 
everything in the world will get 
radically faster!

On the other hand, this might also 
wreck how modern security and 
encryption is implemented (as it will 
get easier to break cryptography).

What happens if we prove P != NP?

Not much; we'll still have to use slow 
or good-enough solutions to hard 
problems. But a lot of computer 
scientists can turn their focus to 
other problems.

Most people think P != NP, but we 
don't know how to prove it.
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Unit 2 Review on Friday

In Friday's lecture we'll review Unit 2.

[This will be after Quiz3, but it will still happen before Quiz4!]

Fill out the following poll to suggest topics you'd like to review: 
https://forms.gle/cMCCERKXoAcvYxT87
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Learning Goals

• Identify brute force approaches to common problems that run in O(n!), including 
solutions to Travelling Salesperson and puzzle-solving

• Identify brute force approaches to common problems that run in O(2n), including 
solutions to subset sum and exam scheduling

• Define whether a function family is tractable or intractable

• Define the complexity classes P and NP and explain why they are important

• Feedback: http://bit.ly/110-s21-feedback
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