
Graphs
15-110 – Wednesday 03/17

Announcements

• No class on Friday
• No OH Friday either
• Happy midsemester break!

• Midsemester Stuff
• Midsemester grades will cover material from weeks 1-4 (including quiz1, quiz2).

Canvas is set up to show them now. Weeks 5-7 won't be included due to the revision
deadline.

• Midsemester surveys are out! Please let us know what's working and what can be
improved.
• You get 3 bonus points on Hw4 for completing both surveys. The survey itself is anonymous,

so follow the link provided when you submit to fill out a second form and confirm you took
the survey; we'll use that one to assign points.

• Course: https://forms.gle/7KiP3RYL1evngS5K6
• TAs: https://forms.gle/THwXVxpT8oGqK7WQ6

2

https://forms.gle/7KiP3RYL1evngS5K6
https://forms.gle/THwXVxpT8oGqK7WQ6

Announcements II

• Hw3 – Just #7 due Monday at noon

• Check4 is due Monday at noon
• When working on the coding questions, start from the class examples and read the question

prompts thoroughly
• Tomorrow's recitation has a practice problem very similar to a Check4 problem- I strongly

recommend you attend!

• Check3/Hw3 revision deadline Tuesday at noon

• Quiz3 next Wednesday
• Practice materials are released
• OLI problems on recursion should be released by Friday evening

3

Learning Goals

• Identify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

• Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

4

Graphs

5

Graphs are Like More-Connected Trees

Last time we discussed trees, which let us store data by connecting
nodes to each other to create a hierarchical structure.

Graphs are like trees – they are composed of nodes and connect those
nodes together. However, they have fewer restrictions on how nodes
can be connected. Any node can be connected to any other node in
the graph.

6

Graphs in the Real World

Graphs show up all the time in real-
world data. We can use them to
represent maps (with locations
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in
algorithms, to represent data like
social networks (with people
connected by friendships), or
recommendation engines (with
items connected if they were
purchased together).

7

Graphs are Made of Nodes and Edges

The nodes in a graph are the same
as the nodes in a tree – they hold
the values stored in the structure.

The edges of a graph are the
connections between nodes.

We say that for a node X, any
nodes that X connects to with an
edge are X's neighbors.

8

A

B

E

H

C

G

D F

E's neighbors

Edges Can Have Weights

Sometimes edges can have
weights, such as the length of a
road or the cost of a flight. Our
example graph here has weights-
the numbers next to lines.

9

A

B

E

H

C

G

D F

9

3

2 1 7

5

2

4

Edges Can Have Directions

Edges can also be directed (from A to
B but not from B to A unless there is
another directed edge from B to A),
or undirected (go in either direction
on an edge between nodes).

The main graph to the right is mostly
undirected, except for the edge
between nodes D and F and the
edges between A and G, which are
directed (notice the arrows). Usually
directionality is not mixed like this in
a graph.

10

A

B

E

H

C

G

D F

Activity: Recognize the Parts

Consider the graph to the right.

How many nodes does the graph have?

How many edges?

What are the neighbors of node F?

Do the edges have weights?

Are the edges directed?

11

C

A

E F

D

B

Coding with Graphs

12

Represent Graphs in Python with Dictionaries

Like trees, graphs are not implemented directly by Python. We need to
use the built-in data structures to represent them.

Our implementation for this class will use a dictionary that maps node
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be nested dictionaries;
we'll be able to access all the node values directly. That's because
graphs aren't inherently recursive.

We'll need to slightly alter this representation based on whether or not
the edges of the graph have weights.

13

Graphs in Python – Unweighted Graphs

Graphs with no values on the edges are
called unweighted graphs.

The keys of the dictionary will be the
values of the nodes. Each node maps to
a list of its adjacent nodes (neighbors),
the nodes it has a direct connection
with.

On the right, we show our example
graph in its dictionary implementation.

unweightedGraph = {
"A" : ["B", "G"],
"B" : ["A", "C"],
"C" : ["B", "H"],
"D" : ["F"],
"E" : ["G", "H"],
"F" : ["D"],
"G" : ["A", "E", "H"],
"H" : ["C", "E", "G"]

}
14

A

B

E

H

C

G

D F

Graphs in Python – Weighted Graphs

Weighted graphs have values
associated with the edges. We need to
store these values in the dictionary also.

We'll do this by changing the list of
adjacent nodes to be a 2D list. Each of
the inner lists represents a node/edge
pair, so it has two values – the adjacent
node's value and the weight of the
edge.

On the right, we show our updated
example graph in this format.

15

A

B

E

H

C

G

5 3

2
91

7

2

weightedGraph = {
"A" : [["B", 5], ["G", 2]],
"B" : [["A", 5], ["C", 3]],
"C" : [["B", 3], ["H", 9]],
"D" : [["F", 4]],
"E" : [["G", 1], ["H", 7]],
"F" : [["D", 4]],
"G" : [["A", 2], ["E", 1], ["H", 2]],
"H" : [["C", 9], ["E", 7], ["G", 2]]
}

D F
4

Finding a Graph's Nodes

Let's look at some basic examples of programming with graphs.

To print all the nodes in a graph, just look at every key in the dictionary.

16

def printNodes(g):
for node in g:

print(node)

Finding a Graph's Edges

To print all the edges, you'll need to loop over each value in the dictionary too (a
list of nodes).

def printEdges(g):

for node in g:

for neighbor in g[node]:

print(node + "-" + neighbor)

Note that this example is for an unweighted graph. To get neighbor values in a
weighted graph, index into neighbor[0] .

17

Finding a Node's Neighbors

If we want to get the neighbors of a particular node, index into that node in the
dictionary.

18

def getNeighbors(g, node):
return g[node]

If the graph has weights, we'll need to reconstruct the neighbor list:

def getNeighbors(g, node):
neighbors = []
for pair in g[node]:

neighbors.append(pair[0])
return neighbors

Finding an Edge's Weight

Finally, to find an edge's weight, index and loop to find the appropriate
pair.

19

def getEdgeWeight(g, node1, node2):
for pair in g[node1]:

if pair[0] == node2:
return pair[1]

Example: Most Popular Person

Now that we have the basics, we can
start problem solving.

Let's write a function that takes a social
network as a graph and returns the
person in the network who has the
most friends.

This is just our typical find-largest-
property algorithm applied to a graph.

def findMostPopular(g):

biggestCount = 0

mostPopular = None

for person in g:

if len(g[person]) > biggestCount:

biggestCount = len(g[person])

mostPopular = person

return mostPopular

20

Example: Make Invite List

Now let's say a person wants to make
more friends, so they're holding a party.
They want to invite their own friends,
but also anyone who is a friend of one
of their friends.

Now we have to loop over each of the
person's friends, to access that node's
own list of friends.

def makeInviteList(g, person):

start with immediate friends

invite = g[person] + [] # break alias

for friend in g[person]:

find friends-of-friends

for theirFriend in g[friend]:

if theirFriend not in invite and \

theirFriend != person:

invite.append(theirFriend)

return invite

21

Activity: friendsInCommon(g, p1, p2)

You do: Given an unweighted graph of a
social network (like in the previous two
examples) and two nodes (people) in the
graph, return a list of the friends that those
two people have in common.

For example, in the graph shown to the
right, calling friendsInCommon on "Jon"
and "Jaime" would return the list [
"Tyrion"].

Hint: start by looping over all the friends of
the first person. Check whether any of them
are also friends of the second person and
add them to a result list if they are.

g = { "Jon" : ["Arya", "Tyrion"],

"Tyrion" : ["Jaime", "Pod", "Jon"],

"Arya" : ["Jon"],

"Jaime" : ["Tyrion", "Brienne"],

"Brienne" : ["Jaime", "Pod"],

"Pod" : ["Tyrion", "Brienne", "Jaime"],

"Ramsay" : []

}

22

Learning Goals

• Identify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

• Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

• Feedback: http://bit.ly/110-s21-feedback

23

http://bit.ly/110-s21-feedback

