Trees

15-110 — Monday 03/15

* Hw3 was due today

e Except Hw3 - #7, which is due next Monday. Download the special starter file
and submit to "Hw3 — Just #7"

* Check4 & Hw4 out

* These tend to be difficult for students. Start early and use your resources
(collaboration, office hours, piazza, small group sessions)!

* |dentify core parts of trees, including nodes, children, the root, and
leaves

* Use binary trees implemented with dictionaries when reading and
writing code

Merge Sort: Fast Review

17

17

63

63

53

53

32

32

91

49

91

27

49

34

27

34

63

53

91

32

34

17

63

53

91

384

49

32

49

27

27

17

Merge Sort Code & Efficiency Computation

def mergeSort(lst): def merge(halfl, half2):
if len(1lst) < 2: result = []
return 1lst i=20
mid = len(lst) // 2 j =0
front = Ist[:mid] «—_ while i < len(halfl) and j < len(half2):
back = lst[mid:] «— COPY if halfi[i] < half2[j]:<«— Comparison
front = mergeSort(front) result.append(halfl[i])
back = mergeSort(back) ’/,/’/,'i =1i+1
return merge(front, back) Copy else:
T result.append(half2[j])
st = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9] i=3+1
sortedLst = mergeSort(lst) result = result + halfl[i:] + half2[j:]

print(sortedLst) return result ‘\\\ ///’

Copy ;

n copies in each split-pass
n copies + “n comparisons in each

merge-pass

7

Split

Pass 1
Split

Pass 2
Split

Pass 3
Merge
Pass 1
Merge
Pass 2

Merge
Pass 3

Every time a split-pass occurs, we cut the number of elements being
sorted in half. The number of split-passes is the number of times we
can divide the list in half, or log,n. The number of merge-passes is the

same.
Overall work: nlogn+2 * (nlogn) =3 * (n log n) = O(n log n)

O (n log n) may not seem a lot better than O(n?), but the difference
shows when you get up to large datasets!

Trees

eeeeee

Sometimes we work with data that is hierarchical in nature. In this
context, 'hierarchical' means that data occurs at different levels and is
connected in some way.

Hierarchical data shows up in many different contexts.
* File systems in computers — each folder is a rank above the files it contains
 Company organization schemas — the CEO at the top, interns at the bottom
e Sports tournament brackets — the overall winner is ranked highest

(3 c03432-hw-deve
s)) () 5 : WOMEN'S WORLD CUP
AN (r———
200 agenda + [autograder === . 1c
lloGrading.pd HW1 g =
Hw2 e -
nnnnnn s === - —
" Gl Hwe — =
s Eesize HW_new m o N
wes e 228 o EE EE R el e B
W Clesi s G+ Reaowe -
" samplesolutions -
°l ~~~~~~~ Save r = = = = = = =
W @mse > Fosudse @ secncomm s e e (== o .:. E H
v
owzmel g Ceinecourses 1O e (8
W G profder B e = == e E
xxxxxxxx - an
tools
,,,,,,,,,,,, =1 - A
unf.p B Y s (peee——
vitu
wok e 2
e

10

A tree is a hierarchical data structure
composed of nodes (circles in the
example shown to the right).

Each node can hold a value (its data).

The node the level above a node is
called its parent, and nodes
connected on the level below are
called its children. In general, a node
has exactly one parent and can have
any number of children.

node 5's parent

node 5

node 5's children

Unlike real trees, trees in computer science
grow downward!

The top-most node is called the root. Every
(non-empty) tree has a root. The root has
no parent.

On the other hand, a node can have other
nodes as children, and those nodes can
have children as well. The number of levels
a tree can have is unlimited.

Nodes that have no children are called
leaves.

leaves

A tree is a naturally recursive data structure.

Each node's children are subtrees, which
are just trees again.

For example, the root node 3 has two
subtrees. The subtree on the left has a root
node 5. The subtree on the right has a root
node 7. Each of these root nodes have
subtrees as children.

Our base case can be a leaf (or even an
empty tree).

The recursive case makes the problem
smaller by repeating on the children, which
are also trees.

subtree

root

g

subtree

: , , , 6's left child 6's right child
It's possible to write algorithms E

for trees that have an arbitrary
number of children, but in this

class we'll focus on binary trees. e a

A binary tree is a tree that can
have at most 2 children per node.
We assign these children names-
left and right, based on their
position.

Given the tree shown to the right:
* What is the root?

e What are the children of node
X?

* What is the node X's parent?
* What are the leaves?

Coding with Trees

Computer science uses a large number of classical data structures.
Some of these (like lists and dictionaries) are implemented directly by
Python. Others are not implemented directly; we need to design an
implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them
and add/remove nodes. That's beyond the scope of this class, though.

Python Syntax — Trees as Dictionaries

Each node of the tree will be a dictionary
that has three keys.

* The first key is the string "contents”, t =
which maps to the value in the node.

 The second key is the string "left",
which either maps to a node
(dictionary) if the node has a left child,
or None if there is no left child.

* The third key is the string "right"”,
which either maps to a node
(dictionarfy) if the node has a right child,
or None if there is no right child.

Our example tree is written as a
dictionary to the right.

"right"

{ "contents" :
llle_F_tll : { 1]
"left"

{ mn
"left"
"right"

"right"

6,

contents™

contents”

. 3,

: { "contents"

"left"
"right"

: { "contents”
: None,
: None } 1},

"left"
mn r‘ight n
: 2,

: None,
: { "contents"
: None,

: None } } }

"left”
"right”

. 8,

: None,
: None },

. 7,

: 9,

18

Simple Example: getChildren(t)

Given a tree, how can we get the def getChildren(t):
children of the root node? result = []

if t["left"] != None:
leftT = t["left"]

Access the "left" and "right”
result.append(leftT["contents"])

subtrees directly, then access their
"contents", if they exist. if t["right"] != None:
rightT = t["right"]
result.append(rightT["contents"])
Note that we use two separate ifs,
not an 1f-elif, because it's
possible for both to be True.

return result

19

Because a tree is a recursive data structure, we'll usually need to use recursion to
operate on trees.

The blase case is when the current node is a leaf and we need to do something with
its value.

In the recursive case, we'll call the function recursively on the left and then call
again on the right child, if both exist. Usually we'll then combine those results in
some way with the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree)
and always recurse on both left and right children in the recursive case. This can be
more confusing to think about but is often simpler to program.

Example: countNodes

Let's write a program that takes a def countNodes(t):

tree of values and counts the if t["left"] == None and \
number of nodes in the tree. t["right"] == None:
return 1
else:
The base case: return 1 (a single count = ©
node). if t["left"] != None:

count += countNodes(t["left"])
if t["right"] != None:

count += countNodes(t["right"])
return count + 1

The recursive case: add the counts of
the left and right subtrees together if
they exist, then add 1 more for the
current node.

21

Example: countNodes — Different Base Case

AIternativeI(]/, we could solve this by
checking a different base case:
whether the node is an empty tree
(if the current node is None).

An empty tree has a © nodes; a non-
empty tree has a number of nodes
based on its two subtrees, plus the
current node.

The difference here is that there are
always recursive calls to both

children, even if they might be None.

def countNodes(t):

if t == None:

return 0
count = ©
count += countNodes(t["left"])
count += countNodes(t["right"])
return count + 1

22

Example: sumNodes (t)

What if we instead wanted to add all the nodes ~ def sumNodes(t):

in the tree? (Let's assume it's a tree of integers). if t["left"] == None and \
Now we'll need to use the nodes' values. t["right"] == None:

return t["contents"]
Base case: directly return the value of the only else:
node (the leaf). result = ©
Recursive case: combine the sums of the two if t["left"] != None:
subtrees (if they exist) with the current node's result += sumNodes(t["left"])
value. if t["right"] != None:

result += sumNodes(t["right"])

Our code structure is very similar to return result + t["contents”]

countNodes, but now we're using
t["contents"].

23

You do: write the function listValues(t), which takes a tree and returns
a list of all the values in the tree. The values can be in any order, but try to
put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you need to
consider the type of the values you'll return.

Given our example tree (shown below), the function returns:
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 12.

Advanced Example: Family Trees (if time)

Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree — the child is at the root, their parents are the node's
children, etc.

25

Advanced Example: getPastGen

Let's write a function that finds all def getPastGen(t, n):

the child's ancestors from N if n ==

generations ago. N=1 would be return [t["contents"]]
their parents; N=2 would be else:

grandparents; etc. gen = []

if t["left"] != None:

gen += getPastGen(t["left"], n-1)
if t["right"] != None:

gen += getPastGen(t["right"], n-1)

Note that for this problem, our
base case is not a leaf- it's when
we reach the generation we're

. ret
looking for. srurn sen

26

* |dentify core parts of trees, including nodes, children, the root, and
leaves

* Use binary trees implemented with dictionaries when reading and
writing code

* Feedback: http://bit.ly/110-s21-feedback

27

http://bit.ly/110-s21-feedback

