
Designing Efficient 
Algorithms

15-110 – Friday 03/12



Announcements

• Final Exam date released
• Monday 5/10 8:30am-11:30am EST. We're not happy either.
• Exam will happen during the exam timeslot, not in a 24 hour period.
• I'll contact students in significantly impacted timezones (CTT, JST/KST, PST) to arrange 

an alternate option. Contact me if you are not in one of those timezones and have a 
direct conflict.

• Quiz2 grades will be released by Saturday
• TAs are working hard to make sure the code-writing problem is graded appropriately

• Hw3 due Monday at noon

2



Learning Objectives

• Recognize the requirements for building a good hash function and a 
good hashtable that lead to constant-time search

• Recognize and trace the algorithms for selection sort and merge sort

• Compare and contrast the efficiency and Big-O runtimes of selection 
sort and merge sort

3



Increase Efficiency by Cutting Extra Work

We've talked about how to 
determine the efficiency of an 
algorithm, but we haven't addressed 
a more important question. How can 
we design algorithms to make them 
more efficient?

Sometimes making a program more 
efficient is easy; you just need to 
look for unnecessary actions 
(statements that aren't used, loops 
that repeat work already done) and 
cut them.

def findLargest(lst):
largest = lst[0]
for i in range(len(lst)):

for j in range(len(lst)):
if lst[i] > largest and \

lst[i] > lst[j]:
largest = lst[i]

return largest

# could be

def findLargest(lst):
largest = lst[0]
for i in range(1, len(lst)):

if lst[i] > largest:
largest = lst[i]

return largest
4



Increase Efficiency by Thinking Differently

More often we increase the efficiency of an algorithm by thinking about the 
problem in a different way.

The obvious solution to a problem isn't always the most efficient. We can 
often make a faster solution by using a different data structure or an entirely 
different algorithmic approach.

We'll look at two case studies of this today, with search and sorting.

Note: we won't ask you to make your algorithms more efficient in this class 
as a primary learning goal, but it's still useful to know about!

5



Optimizing Search 

6



Improving Search

We've discussed linear search (which runs in O(n)), and binary search 
(which runs in O(log n)).

We use search all the time, so we want to search as quickly as possible. 
Can we search for an item in O(1) time?

We can't always search for things in constant time, but there are 
certain circumstances where we can.

7



Search in Real Life – Post Boxes

Consider how you receive mail. Your mail is sent 
to the post boxes at the lower level of the UC. 
Do you have to check every box to find your 
mail?

No- just check the one assigned to you.

This is possible because your mail has an 
address on the front that includes your mailbox 
number. Your mail will only be put into a box 
that has the same number as that address, not 
other random boxes.

Picking up your mail is a O(1) operation!
8



Search in Programming – List Indexes

We can't search a list for an item in 
constant time, but we can look up an 
item based on an index in constant 
time.

Reminder: Python stores lists in 
memory as a series of adjacent parts. 
Each part holds a single value in the 
list, and all these parts use the same 
amount of space.

Example:
lst = ["a", "abc", True]

9

lst

"a" "abc" True



Search in Programming – List Indexes
We can calculate the exact starting location of a list 
index's memory address based on the first address 
where lst is stored. If the size of a part is N, we can 
find an index's address with the formula:

start + N * index

Example: in the list to the right, each part is 8 bytes in 
size and the memory values start at 0800. To access 
lst[2], compute:

0800 + 8 * 2 = 0816

Given a memory address, we can get the value from 
that address in constant time. Looking up an index in a 
list is O(1)!

8 bytes 8 bytes 8 bytes

10

lst

"A" "B" "C" "D" "E"

0800 8 bytes 8 bytes



Combine the Concepts

To implement constant-time search, we want to combine the ideas of 
post boxes and list index lookup. Specifically, we want to determine
which index a value is stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the 
value in constant time.

11



Hash Functions Map Values to Integers

In order to determine which list index should be used based on the 
value itself we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This 
function must follow two rules:

• Given a specific value x, hash(x) must always return the same output i

• Given two different values x and y, hash(x) and hash(y) should usually
return two different outputs, i and j

12



Built-in Hash Function

We don't need to write our own hash function most of the time-
Python already has one!

x = "abc"

hash(x) # some giant number

hash() works on integers, floats, Booleans, strings, and some other 
types as well.

13



Optimizing Search: Hashtables

14



Hashtables Organize Values

Now that we have a hash function, we can 
use it to organize values in a special data 
structure.

A hashtable is a list with a fixed number of 
indexes. When we place a value in the list, 
we put it into an index based on its hash 
value instead of placing it at the end of the 
list.

We often call these indexes 'buckets'. For 
example, the hashtable to the right has four 
buckets. Important: actual hashtables have 
far more buckets than this.

15

index 0 index 1 index 2 index 3



Adding Values to a Hashtable

For simplicity, let's say this hashtable uses a 
hash function that maps strings to indexes 
using the first letter of the string, as shown 
to the right. (This is not a good hash 
function, but it will serve as an example).

First, add "book" to the table. 
hash("book") is 1, so we'll put the value 
in bucket 1.

Next, add "yay". hash("yay") is 24, 
which is outside the range of our table. 
How do we assign it?

Use value % tableSize to map integers 
larger than the size of the table to an index. 
24 % 4 = 0, so we put "yay" in bucket 0. 16

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"book""yay" "book"



Dealing with Collisions

When you add lots of values to a hashtable, two 
elements may collide. This happens if they are 
assigned to the same index. For example, if we 
try to add both "cmu" and "college" to our 
table, they will collide.

Hashtables are designed to handle collisions. 
One algorithm for handling collisions is to put 
the collided values in a list and put that list in 
the bucket. If your table size is reasonably big 
and the indexes returned by the hash function 
are reasonably spread out, each bucket will 
normally hold a constant number of values.

Our example hash function is not good because 
it only looks at the first letter. A function that 
uses all the letters would be better.

17

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"



You Do: Search a Hashtable

Let's say that we want to 
algorithmically check whether the 
string "friday" is in our 
hashtable.

You do: Which buckets does the 
algorithm need to check?

18

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"



Searching a Hashtable is O(1)!

To search for a value, call the hash function 
on it and mod the result by the table size. 
The index produced is the only index you 
need to check!

For example, we can check if "book" is in 
the table just by checking bucket 1.

If the value is in the table, it will be at that 
index. If it isn't, it won't be anywhere else 
either. To check for "stella" just look in 
in bucket 2.

Because we only need to check one index 
and each index holds a constant number of 
items, finding a value is O(1).

19

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"



Caveat: Don't Hash Mutable Values!

What happens if you try to put a list in a 
hashtable? Let's set lst = ["a", "z"]
and use the given hash to add lst.

This might seem fine at first, but it will 
become a problem if you change the list 
before searching. Let's say we set      
lst[0] = "d".

When we hash the list again, the hashed 
value is 3, not 0. But the list isn't stored in 
bucket 3! We can't find it reliably.

For this reason, we don't put mutable 
values into hashtables. If you try to run the 
built-in hash() on a list, it will crash.

20

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"

"yay"
["d", "z"]

"book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"



Dictionaries Use Hashed Search

Because hashed search requires immutable search values and a 
hashtable, it isn't used in lists or strings. However, it is used to 
implement dictionary search.

Recall that the keys of a dictionary must be immutable. This is because 
those keys are all stored in a hashtable. Each key points to its own 
value; that's how values can still be accessed.

This means that searching for a key in a dictionary takes O(1) time! 
Dictionaries are super efficient for basic lookup tasks.

21



Searching Dictionaries vs. Lists

Recall the built-in operator in, which checks for membership in a data 
structure.

item in lst runs in linear time if lst is a list, because Python can't 
guarantee that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary due to hashing.

If you know that you'll need to do a lot of searching for specific values, it's 
better to store your data in a dictionary than a list, even if its a sorted list.

22



Coding Efficiently With Dictionaries

Here's an example of how to increase a 
function's efficiency with dictionary search. 
Say you want to check whether there are 
any duplicates in a dataset. This is 
commonly needed in data analysis to make 
sure datapoints aren't double-counted.

If we try to check every element in a list
using in, it will take O(n2) time                    
(n-1 actions * n items checked).

If we instead move the items to a 
dictionary, it takes O(n) time 
(constant actions * n items checked).

def hasDuplicates(studentIDs):

for i in range(len(studentIDs)):

others = studentIDs[:i] + studentIDs[i+1:]

if studentIDs[i] in others:

return True

return False

# vs

def hasDuplicates(studentIDs):

studentDict = { }

for student in studentIDs:

if student in studentDict:

return True

else:

studentDict[student] = 1

return False
23



Optimizing Sorting: Selection Sort

24



Many Ways of Sorting

Sorting items (putting them in order based on a comparison rule) is as 
prevalent in computer science and algorithmic thinking as searching is. 

Computer scientists have designed dozens of algorithms for how to sort 
a list under different circumstances as a result. Some of these 
algorithms are generally more efficient than others.

We'll start with a straightforward sorting algorithm, then show how to 
sort more efficiently by taking an entirely different approach.

25



Selection Sort Sorts from Smallest to Largest

If you were asked to sort a large stack of books by title, you might do so 
by looking for the last title and putting it at the bottom, then look for 
the next-to-last-title and put it second-to-last, etc. This is called 
selection sort – you're selecting which item to sort next.

The core idea of selection sort is that you sort from smallest to largest 
(or largest to smallest). This is a very intuitive way to sort.

See an example here: https://visualgo.net/en/sorting

26

https://visualgo.net/en/sorting


Selection Sort Algorithm

1. Start with none of the list sorted

2. Repeat the following steps until the whole list is sorted:
a) Search the unsorted part of the list to find the smallest element

b) Swap the found element with the first unsorted element

c) Increment the size of the 'sorted' part of the list by one

Note: in Python, swapping the element currently in the front position 
with the smallest element is faster than sliding all of the numbers down 
in the list.

27



17 27 32 91 53 49 63 84

Selection Sort Process

28

17 27 32 91 53 49 63 84sorted unsorted

17 27 32 91 53 49 63 84

next index to sort

smallest unsorted item

17 27 32 49 53 91 63 84

swap

now this is sorted too!



Sidebar: Swapping Elements in a List

It's common to swap elements in lists as we sort them. Let's implement 
swapping separately from the rest so we can count it as a single action.

To swap two elements, you need to create a temporary variable to hold one 
of them. This keeps the first element from getting overwritten.

def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp

29



Selection Sort Code

def selectionSort(lst):

# i is the index of the first unsorted element

# everything before it is sorted

for i in range(len(lst)-1):

# find the smallest element

minIndex = i

for j in range(minIndex + 1, len(lst)):

if lst[j] < lst[minIndex]:

minIndex = j # the element at this index is smaller

swap(lst, i, minIndex)

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

sortedLst = selectionSort(lst)

print(sortedLst)
30



Selection Sort – Efficiency Analysis

Sort algorithms do lots of different operations. For now, let's just 
consider comparisons and swaps.

We'll also refer to individual passes of the sorting algorithm. A pass is a 
single iteration of the outer loop (or putting a single element into its 
sorted location).

31



Selection Sort Code – Comparisons and Swaps

def selectionSort(lst):

# i is the index of the first unsorted element

# everything before it is sorted

for i in range(len(lst)-1):

# find the smallest element

minIndex = i

for j in range(minIndex + 1, len(lst)):

if lst[j] < lst[minIndex]:

minIndex = j # the element at this index is smaller

swap(lst, i, minIndex)

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = selectionSort(lst)

print(lst)
32

A single iteration of this is a pass

Comparison

Swap



Selection Sort – Comparisons and Swaps

What's the worst case input for Selection Sort?

Answer: Any list, really. The list doesn't affect the actions taken.

How many comparisons does Selection Sort do in the worst case if the input list has n 
elements?

Search for 1st smallest:  n-1 comparisons
Search for 2nd smallest: n-2 comparisons
...
Search for 2nd-to-last smallest: 1 comparison

Total comparisons: (n-1) + (n-2) + ... + 2 + 1   =   n * (n-1) / 2   =  n2/2 - n/2

You do: how many swaps happen per pass?

33



Selection Sort – Efficiency 

The algorithm does a single swap at the end of each pass, and there are 
n-1 passes, so there are n-1 swaps.

Overall, we do n2/2 - n/2 + n-1 actions. However, we don't care about 
the lower-order terms or constants.

Selection sort is O(n2). That's not bad, but we can do better!

34



Optimizing Sorting: Merge Sort

35



Improve Efficiency with a Drastic Change

If we want to do better than O(n2), we need to make a drastic change in our 
algorithm.

Instead of thinking iteratively, what if we think recursively? Can we solve this using 
delegation?

One common strategy is Divide and Conquer:

1. Divide the problem into "simpler" versions of itself (usually in two halves).

2. Conquer each problem using the same process (usually recursively).

3. Combine the results of the "simpler" solutions to form the final solution.

36



Merge Sort Delegates, Then Merges

Merge sort is an algorithm that sorts using divide and conquer. The 
core idea of the Merge Sort algorithm is that you sort by merging. It's a 
little unintuitive but will help us improve efficiency.

1. If there are 0 or 1 elements, return the list itself (already sorted)

2. Otherwise...

1. Delegate sorting the front half of the list (recursion!)

2. Delegate sorting the back half of the list (recursion!)
3. Merge the two sorted halves into a new sorted list.

37



Merge Sort Process

6

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

27 49 84 91 17 32 53 63

17 27 32 49 53 63 84 91

Divide:

Conquer: (sort)

Combine: (merge)

38



Merge Sort Code

def mergeSort(lst):

# base case: 0-1 elements are already sorted

if len(lst) < 2:

return lst

# divide

mid = len(lst) // 2

front = lst[:mid]

back = lst[mid:]

# conquer by sorting

front = mergeSort(front)

back = mergeSort(back)

# combine sorted halves

return merge(front, back)
39



Merge By Checking the Front of the Lists

How do we merge two sorted lists?

Visualize it here: https://visualgo.net/en/sorting

1. Create a new empty 'result' list

2. Keep track of two pointers to the two lists, each starting at the first element

3. Repeat the following until we've added all the elements of one of the lists:
a) Compare the pointed-to elements in each of the two lists
b) Copy the smaller element to the end of the result list
c) Move the pointer from the smaller element to the next one in that list

4. Move the rest of the unfinished list to the end of the result list

40

https://visualgo.net/en/sorting


Merge Code
def merge(half1, half2):

result = [ ]
i = 0
j = 0
while i < len(half1) and j < len(half2):

# only compare first two (guaranteed to be smallest due to sorting)
if half1[i] < half2[j]:

result.append(half1[i])
i = i + 1

else:
result.append(half2[j])
j = j + 1

# add remaining elements (only one of the halves still has values)
result = result + half1[i:] + half2[j:]
return result

41



Merge Sort – Efficiency Analysis

Merge Sort doesn't have swaps; it has copies. We'll consider the 
number of comparisons and copies that are performed.

Merge sort will have two kinds of passes: split-passes (splitting a list 
into two halves) and merge-passes (merging two lists into one).

What's the worst case input?

Any list; it doesn't matter.

42



Merge Sort Code

def mergeSort(lst):

if len(lst) < 2:

return lst

mid = len(lst) // 2

front = lst[:mid]

back = lst[mid:]

front = mergeSort(front)

back = mergeSort(back)

return merge(front, back)

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

sortedLst = mergeSort(lst)

print(sortedLst)

def merge(half1, half2):

result = [ ]

i = 0

j = 0

while i < len(half1) and j < len(half2):

if half1[i] < half2[j]:

result.append(half1[i])

i = i + 1

else:

result.append(half2[j])

j = j + 1

result = result + half1[i:] + half2[j:]

return result

43

Comparison

Copy

Copy

Copy



Merge Sort Call Breakdown

44

2 4 1 5 8 3 6 7

1 2 3 4 5 6 7 8

2 4 1 5 8 3 6 7

2 4 1 5

2 4 1 5

2 4 1 5

1 2 4 5 3 6 7 8

8 3 6 7

3 8 6 7

8 3 6 7



Merge Sort Call Breakdown

45

2 4 1 5 8 3 6 7

1 2 3 4 5 6 7 8

2 4 1 5 8 3 6 7

2 4 1 5

2 4 1 5

2 4 1 5

1 2 4 5 3 6 7 8

8 3 6 7

3 8 6 7

8 3 6 7

Split
Pass 1

Split
Pass 2

Split
Pass 3

Merge
Pass 1

Merge
Pass 2

Merge
Pass 3

n copies in each split-pass
n copies + ~n comparisons in each 

merge-pass



Merge Sort Efficiency

How many split-passes and merge-passes occur?

Every time a split-pass occurs, we cut the number of elements being sorted in half. 
The number of split-passes is the number of times we can divide the list in half.

We have one merge-pass for each split-pass, so that same number is used for 
merge-passes.

That means there are log2n split-passes and log2n merge-passes.

Overall work: n log n + 2 * (n log n) = 3 * (n log n) = O(n log n)

46



Efficiency of Selection vs. Merge Sort

O (n log n) [or O(n * log n)] may not seem a lot better than O(n2) [or O(n*n)], but 
the difference shows when you get up to large datasets!

47

n selection sort 
n2/2 + n/2 - 1 

merge sort
3 n log

2
n

Ratio
(selection / merge)

8 (23) 35 72 0.49

16 (24) 135 192 0.70

32 (25) 527 480 1.1

1024 (210) 524,799 30,720 17.1

1,048,576 (220) 549,756,338,175 62,914,560 8738.1

Discuss: how might the efficiency change if we split into three parts instead of two?



Learning Objectives

• Recognize the requirements for building a good hash function and a good 
hashtable that lead to constant-time search

• Recognize and trace the algorithms for selection sort and merge sort

• Compare and contrast the efficiency and Big-O runtimes of selection sort
and merge sort

• Feedback: http://bit.ly/110-s21-feedback

48

http://bit.ly/110-s21-feedback

