Designing Efficient
Algorithms

15-110 - Friday 03/12

* Final Exam date released
* Monday 5/10 8:30am-11:30am EST. We're not happy either.
* Exam will happen during the exam timeslot, not in a 24 hour period.

* |'ll contact students in significantly impacted timezones (CTT, JST/KST, PST) to arrange
an alternate option. Contact me if you are not in one of those timezones and have a

direct conflict.

* Quiz2 grades will be released by Saturday
* TAs are working hard to make sure the code-writing problem is graded appropriately

* Hw3 due Monday at noon

* Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

* Recognize and trace the algorithms for selection sort and merge sort

 Compare and contrast the efficiency and Big-O runtimes of selection
sort and merge sort

Increase Efficiency by Cutting Extra Work

We've talked about how to def findLargest(lst):

determine the efficiency of an largest = 1st[0]

algorithm, but we haven't addressed for i in range(len(lst)):

a more important question. How can for j in range(len(1lst)):

we design algorithms to make them if 1st[i] > largest and \
more efficient? Ist[i] > 1st[j]:

largest = 1st[i]
. . return largest
Sometimes making a program more

efficient is easy; you just need to # could be

look for unnecessary actions

(statements that aren't used, loops def findLargest(lst):

that repeat work already done) and largest = 1st[0]

cut them. for i in range(1, len(lst)):

if lst[i] > largest:
largest = 1st[i]
return largest

More often we increase the efficiency of an algorithm by thinking about the
problem in a different way.

The obvious solution to a problem isn't always the most efficient. We can
often make a faster solution by using a different data structure or an entirely
different algorithmic approach.

We'll look at two case studies of this today, with search and sorting.

Note: we won't ask you to make your algorithms more efficient in this class
as a primary learning goal, but it's still useful to know about!

Optimizing Search

We've discussed linear search (which runs in O(n)), and binary search
(which runs in O(log n)).

We use search all the time, so we want to search as quickly as possible.
Can we search for an item in O(1) time?

We can't always search for things in constant time, but there are
certain circumstances where we can.

Consider how you receive mail. Your mail is sent
to the post boxes at the lower level of the UC.
Do you have to check every box to find your
mail?

No- just check the one assigned to you.

This is possible because your mail has an
address on the front that includes your mailbox
number. Your mail will only be put into a box
that has the same number as that address, not
other random boxes.

Picking up your mail is a O(1) operation!

We can't search a list for an item in
constant time, but we can look up an
item based on an index in constant
time.

Reminder: Python stores lists in
memory as a series of adjacent parts.
Each part holds a single value in the
list, and all these parts use the same
amount of space.

Example:
st = ["a", "abc", True]

|st

abc

True

We can calculate the exact starting location of a list
index's memory address based on the first address
where 1st is stored. If the size of a partis N, we can
find an index's address with the formula:

start + N * index

Example: in the list to the right, each part is 8 bytes in
size and the memory values start at . To access
1st[2], compute:

+ 8 * 2 =
Given a memory address, we can get the value from

that address in constant time. Looking up an index in a
list is O(1)!

st
llAlI llBll |IC|I |IDI| IIEII
8 bytes 8 bytes 8 bytes 8 bytes 8 bytes

L/ \

To implement constant-time search, we want to combine the ideas of
post boxes and list index lookup. Specifically, we want to determine
which index a value is stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the
value in constant time.

In order to determine which list index should be used based on the
value itself we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This
function must follow two rules:

* Given a specific value x, hash(x) must always return the same output i

* Given two different values x and y, hash(x) and hash(y) should usually
return two different outputs, 1 and]

We don't need to write our own hash function most of the time-
Python already has one!

X = "abc
hash(x)

hash () works on integers, floats, Booleans, strings, and some other
types as well.

13

Optimizing Search: Hashtables

Now that we have a hash function, we can
use it to organize values in a special data
structure.

A hashtable is a list with a fixed number of
indexes. When we place a value in the list,
we put it into an index based on its hash
value instead of placing it at the end of the
list.

We often call these indexes 'buckets’. For
example, the hashtable to the right has four
buckets. Important: actual hashtables have
far more buckets than this.

index 0

index 1

index 2

index 3

For simplicity, let's say this hashtable uses a
hash function that maps strings to indexes
using the first letter of the strinﬁ, as shown
to the right. (This is not a good hash
function, but it will serve as an example).

First, add "book" to the table.
hash("book™) is 1, so we'll put the value
in bucket 1.

Next, add "yay".hash("yay")is 24,
which is outside the range of our table.
How do we assign it?

Use value 7% tableSizeto map integers
larger than the size of the table to an index.

24 7% 4 = 0,sowe put "yay" in bucket 0.

def hash(s):
return ord(s[@]) - ord('a')

Ilbookll

index 0

index 1

index 2

index 3

16

When you add lots of values to a hashtable, two
elements may collide. This happens if they are
assigned to the same index. For example, If we
tr\éto add both "cmu” and "college" toour
table, they will collide.

Hashtables are designed to handle collisions.
One al%orithm for handling collisions is to put
the collided values in a list and put that list in
the bucket. If your table size is reasonably big
and the indexes returned by the hash function
are reasonably spread out, each bucket will
normally hold a constant number of values.

Our example hash function is not good because
it only looks at the first letter. A function that
uses all the letters would be better.

def hash(s):
return ord(s[@]) - ord('a')

yay "book" cmu
"college"
index O index 1 index 2 index 3

17

Let's say that we want to
algorithmically check whether the

string "friday" isin our
hashtable.

You do: Which buckets does the
algorithm need to check?

def hash(s):
return ord(s[@]) - ord('a')

Ilyayll llbookll |lcmull
"college"
index O index 1 index 2 index 3

18

To search for a value, call the hash function
on it and mod the result by the table size.
The index produced is the only index you
need to check!

For example, we can check if "book" isin
the table just by checking bucket 1.

If the value is in the table, it will be at that
index. If it isn't, it won't be anywhere else
either. To check for "stella" justlook in
in bucket 2.

Because we only need to check one index
and each index holds a constant number of
items, finding a value is O(1).

def hash(s):
return ord(s[@]) - ord('a')

yay "book" cmu
"college"
index O index 1 index 2 index 3

19

What happens if you try to put a list in a
hashtable? Let'sset 1st = ["a", "z"]
and use the given hash to add lst

This might seem fine at first, but it will
become a problem if you change the list
before searching. Let's say we set
1st[0] = "d".

When we hash the list again, the hashed
value is 3, not 9. But the list isn't stored in
bucket 3! We can't find it reliably.

For this reason, we don't put mutable
values into hashtables. If you try to run the
built-in hash() on a list, it will crash.

def hash(s):
return ord(s[@]) - ord('a')

llyayll Ilbookll ||Cmull
[llall’ IIZII] ”CO“ege"
index 0 index 1 index 2 index 3

20

Because hashed search requires immutable search values and a
hashtable, it isn't used in lists or strings. However, it is used to
implement dictionary search.

Recall that the keys of a dictionary must be immutable. This is because
those keys are all stored in a hashtable. Each key points to its own
value; that's how values can still be accessed.

This means that searching for a key in a dictionary takes O(1) time!
Dictionaries are super efficient for basic lookup tasks.

Recall the built-in operator 1n, which checks for membership in a data
structure.

item in lstrunsinlineartimeif 1st isa list, because Python can't
guarantee that the list is sorted. It uses linear search.

item 1n dictrunsin constant time if dict is a dictionary due to hashing.

If you know that you'll need to do a lot of searching for specific values, it's
better to store your data in a dictionary than a list, even if its a sorted list.

Coding Efficiently With Dictionaries

Here's an example of how to increase a
function's efficiency with dictionary search.
Say you want to check whether there are
any duplicates in a dataset. This is
commonly needed in data analysis to make
sure datapoints aren't double-counted.

If we try to check every element in a list
using in, it will take O(n?) time
(n-1 actions * n items checked).

If we instead move the items to a
dictionary, it takes O(n) time
(constant actions * n items checked).

def hasDuplicates(studentIDs):
for i in range(len(studentIDs)):

others = studentIDs[:i] + studentIDs[i+1:]

if studentIDs[i] in others:
return True
return False
vs
def hasDuplicates(studentIDs):
studentDict = { }
for student in studentIDs:
if student in studentDict:
return True
else:
studentDict[student] = 1

return False
23

Optimizing Sorting: Selection Sort

Sorting items (putting them in order based on a comparison rule) is as
prevalent in computer science and algorithmic thinking as searching is.

Computer scientists have designed dozens of algorithms for how to sort
a list under different circumstances as a result. Some of these
algorithms are generally more efficient than others.

We'll start with a straightforward sorting algorithm, then show how to
sort more efficiently by taking an entirely different approach.

If you were asked to sort a large stack of books by title, you might do so
by looking for the last title and putting it at the bottom, then look for
the next-to-last-title and put it second-to-last, etc. This is called
selection sort — you're selecting which item to sort next.

The core idea of selection sort is that you sort from smallest to largest
(or largest to smallest). This is a very intuitive way to sort.

See an example here: https://visualgo.net/en/sorting

https://visualgo.net/en/sorting

1. Start with none of the list sorted

2. Repeat the following steps until the whole list is sorted:
a) Search the unsorted part of the list to find the smallest element
b) Swap the found element with the first unsorted element
c) Increment the size of the 'sorted' part of the list by one

Note: in Python, swapping the element currently in the front position
with the smallest element is faster than sliding all of the numbers down
in the list.

17 27 32 91 53 49 63 34
17 27 32 91 53 49 63 34
\
e N
17 27 32 49 53 91 63 34

It's common to swap elements in lists as we sort them. Let's implement
swapping separately from the rest so we can count it as a single action.

To swap two elements, you need to create a temporary variable to hold one
of them. This keeps the first element from getting overwritten.

def swap(lst, i, j):
tmp = 1st[i]
1st[i] = 1st[j]
1st[j] = tmp

29

Selection Sort Code

def selectionSort(lst):
1 is the index of the first unsorted element

everything before it is sorted
for i in range(len(lst)-1):
find the smallest element
minIndex = i
for j in range(minIndex + 1, len(lst)):
if 1lst[j] < lst[minIndex]:
minIndex = j # the element at this index is smaller
swap(lst, i, minIndex)
return lst

1st = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]
sortedLst = selectionSort(1lst)
print(sortedLst)

30

Sort algorithms do lots of different operations. For now, let's just
consider comparisons and swaps.

We'll also refer to individual passes of the sorting algorithm. A pass is a
single iteration of the outer loop (or putting a single element into its
sorted location).

Selection Sort Code — Comparisons and Swaps

def selectionSort(lst):
1 is the index of the first unsorted element

everything before it is sorted
for i in range(len(lst)-1): < A single iteration of this is a pass
find the smallest element
minIndex = i
for j in range(minIndex + 1, len(lst)):
if 1st[j] < lst[minIndex]: <
minIndex = j # the element at this index is smaller
swap(lst, i, minIndex) <=
return lst

Comparison

Swap

st = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]
1st = selectionSort(lst)
print(lst) .

What's the worst case input for Selection Sort?
Answer: Any list, really. The list doesn't affect the actions taken.

How man%/ comparisons does Selection Sort do in the worst case if the input list has n
elements:

Search for 15t smallest: n-1 comparisons
Search for 2"d smallest: n-2 comparisons

Search for 2"9-to-last smallest: 1 comparison
Total comparisons: (n-1) + (n-2)+...+2+1 = n*(n-1)/2 = n%/2-n/2

You do: how many swaps happen per pass?

The algorithm does a single swap at the end of each pass, and there are
n-1 passes, so there are n-1 swaps.

Overall, we do n%/2 - n/2 + n-1 actions. However, we don't care about
the lower-order terms or constants.

Selection sort is O(n?). That's not bad, but we can do better!

Optimizing Sorting: Merge Sort

If we want to do better than O(n?), we need to make a drastic change in our
algorithm.

Instead of thinking iteratively, what if we think recursively? Can we solve this using
delegation?

One common strategy is Divide and Conquer:
1. Divide the problem into "simpler" versions of itself (usually in two halves).

2. Conquer each problem using the same process (usually recursively).

3. Combine the results of the "simpler" solutions to form the final solution.

Merge sort is an algorithm that sorts using divide and conquer. The
core idea of the Merge Sort algorithm is that you sort by merging. It's a
little unintuitive but will help us improve efficiency.

1. If there are O or 1 elements, return the list itself (already sorted)

2. Otherwise...
1. Delegate sorting the front half of the list (recursion!)
2. Delegate sorting the back half of the list (recursion!)
3. Merge the two sorted halves into a new sorted list.

17

17

63

63

53

53

32

32

91

49

91

27

49

34

27

34

63

53

91

32

34

17

63

53

91

384

49

32

49

27

27

17

Merge Sort Code

def mergeSort(lst):
base case: 0-1 elements are already sorted
if len(lst) < 2:

return lst

divide
mid = len(1lst) // 2
front = 1lst[:mid]
back = 1st[mid:]
conquer by sorting
front = mergeSort(front)
back = mergeSort(back)
combine sorted halves
return merge(front, back)

39

How do we merge two sorted lists?

Visualize it here: https://visualgo.net/en/sorting

1. Create a new empty 'result’ list
2. Keep track of two pointers to the two lists, each starting at the first element

3. Repeat the following until we've added all the elements of one of the lists:
a) Compare the pointed-to elements in each of the two lists
b) Copy the smaller element to the end of the result list
c) Move the pointer from the smaller element to the next one in that list

4. Move the rest of the unfinished list to the end of the result list

https://visualgo.net/en/sorting

Merge Code

def merge(halfl, half2):

result = []
i=20
J =9

while i < len(halfl) and j < len(half2):
only compare first two (guaranteed to be smallest due to sorting)
if halfl[i] < half2[j]:
result.append(halfl[i])

i=1+1

else:
result.append(half2[j])
=3+

add remaining elements (only one of the halves still has values)
result = result + halfl[i:] + half2[j:]
return result

41

Merge Sort doesn't have swaps; it has copies. We'll consider the
number of comparisons and copies that are performed.

Merge sort will have two kinds of passes: split-passes (splitting a list
into two halves) and merge-passes (merging two lists into one).

What's the worst case input?
Any list; it doesn't matter.

Merge Sort Code

def mergeSort(lst): def merge(halfl, half2):
if len(1lst) < 2: result = []
return 1lst i=20
mid = len(lst) // 2 j =0
front = Ist[:mid] «—_ while i < len(halfl) and j < len(half2):
back = lst[mid:] «— COPY if halfi[i] < half2[j]:<«— Comparison
front = mergeSort(front) result.append(halfl[i])
back = mergeSort(back) ’/,/’/,'i =1i+1
return merge(front, back) Copy else:
~~~~~~"‘r‘esul‘c.append(halwcz[j])
st = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9] i=3+1
sortedLst = mergeSort(lst) result = result + halfl[i:] + half2[j:]

print(sortedLst) return result ‘\\\ ///’

Copy e



Merge So

t Call Breakdown

4

5

5

/

&~

/ \

8 3
\

\

/

/ \

\ /




n copies in each split-pass
n copies + “n comparisons in each

merge-pass

45

Split

Pass 1
Split

Pass 2
Split

Pass 3
Merge
Pass 1
Merge
Pass 2

Merge
Pass 3




How many split-passes and merge-passes occur?

Every time a split-pass occurs, we cut the number of elements being sorted in half.
The number of split-passes is the number of times we can divide the list in half.

We have one merge-pass for each split-pass, so that same number is used for
merge-passes.

That means there are log,n split-passes and log,n merge-passes.

Overall work: nlogn+2 * (nlog n) =3 * (n log n) = O(n log n)



O (n log n) [or O(n * log n)] may not seem a lot better than O(n?) [or O(n*n)], but
the difference shows when you get up to large datasets!

n selection sort merge sort Ratio
n?/2+n/2-1 3nlog,n (selection / merge)
8 (23) 35 72 0.49
16 (2%) 135 192 0.70
32 (2°) 527 480 1.1
1024 (219) 524,799 30,720 17.1
1,048,576 (229) 549,756,338,175 62,914,560 8738.1

Discuss: how might the efficiency change if we split into three parts instead of two?




* Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search

* Recognize and trace the algorithms for selection sort and merge sort

 Compare and contrast the efficiency and Big-O runtimes of selection sort
and merge sort

* Feedback: http://bit.ly/110-s21-feedback



http://bit.ly/110-s21-feedback

