Runtime and Big-O Notation

15-110 — Monday 03/08

* Check3 was due today

* Check2/Hw?2 revisions due tomorrow at noon

* Quiz2 on Wednesday

* Recitation is strongly recommended!

* |dentify the worst case and best case inputs of functions

 Compare the function families that characterize different functions

* Calculate a specific function or algorithm's efficiency using Big-O
notation

We'll talk about efficiency a lot in this unit. Why do we care?

Computers are fast, but they can still take time to do complex actions.
Faster algorithms can save lives, increase company profits, and reduce
user frustration.

A major goal of computer scientists is not just to make algorithms that
work, but algorithms that work efficiently.

Linear Search vs. Binary Search

Recall our comparison of linear search vs. binary search in the previous
lecture. How can we compare these two algorithms at an abstract level?

We could run both on the same input and time them. However, how quickly
a program runs varies based on lots of factors (the implementation, the
machine, which other programs are running, etc.)

Instead, we'll choose some meaningful action that occurs in the program
and count the number of actions the program takes on a given input.

What actions might we count? Some lines of code may compose multiple
operations into one line, and some actions may take longer than others to
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we choose some
specific action and count how many times the algorithm runs that action
based on the size of the input.

For example, in linear or binary search we can count the total number of

comparisons that the algorithms make to find an item based on the number
of items in the list.

Linear vs. Binary Search: Search for 66

def linSearch(1lst, target): def biSearch(1lst, target):
if len(1lst) == o: if 1st == []:
return False return False
elif 1st[@] == target: else:
return True mid = len(lst) // 2
else: if lst[mid] == target:
return linSearch(lst[1:], target) return True
elif target < lst[mid]:
How many list elements are compared to return biSearch(lst[:mid], target)
667 else: # lst[mid] < target
linear search: 9 times return biSearch(lst[mid+1:], target)

binary search: 4 times
15t 4th 3rd 2nd
12|25 |32 {37 |41 |48 (58 |60 (66 |73 |74 |79 |83 (91 |95

Best Case, Worst Case

To truly compare the algorithms, it isn't enough to test them on a
random example. We want to know how they'll do in the best case and

in the worst case. Those cases are defined based on the inputs to the
function.

Best case: an input of size n that results in the algorithm taking the
least steps possible.

Worst case: an input of size n that results in the algorithm taking the
most steps possible.

What's the best case for linear search?
Answer: a list where the item we search for is in the first position

What's the worst case for linear search?
Answer: a list where the item we search for is not in the list.

You do: what's the best case input and worst case input for binary
search if we're counting comparisons?

How many actions do we perform in the best case?

For both linear search and binary search, there's just one
comparison — a list of any length in which it finds the item with the
first comparison.

How many actions in the worst case?

In linear search, we have to check every single element. If the list
has n elements, we do n comparisons.

What about binary search?

Each call to binary search compares one item of the list. How many recursive calls
(and therefore comparisons) do we make to binary search for different length lists?

List size Number of recursive calls
1 1

22-1=3 2

23-1=7 3

24-1=15 4

2°>-1=31 5

2k -1 k
n log(n)

When the input length
doubles, linear search
does twice as many
comparisons.

But, when the input length
doubles, binary search
does just one more
comparison!

Our implementation of binary search only looks better than our
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to
create a copy of the list. Our recursive implementations of linear and
binary search both slice the list on every call.

This is inefficient — we're doing more work than we need to! A better
approach would be to pass the reference of the original list and change
the indexes checked instead of changing the list itself.

Function Families

When we count the actions taken by algorithms, we don't really care about
one-off operations; we care about actions that are related to the size of the
input.

In math, a function family is a set of equations that all grow at the same rate
as their inputs grow. For example, an equation might grow linearly or
quadratically.

When determining which equation family represents the actions taken by an
algorithm, we say that n is the size of the input. For a list, that's the number
of elements; for a string, the number of characters.

Common Function Families

Exponential Quadratic
4 |
Number of Linear
Operations
Logarithmic
Constant
>

n (amount of data)

Function Families and Constants

f(n)

2000

500 1000

yined’

-—

'/ -
— ==+ nlog(n) / -’
=== 4n+100 a < -
.cl ° a“
— = 2n+50 & W
— = 100log(n)+20 | &,° .-°

-

Notice that as n grows, the
two linear functions
become larger than the
logarithmic function and
the linear * logarithmic
function becomes larger
than both linear functions,
regardless of the constants.

19

600 1000

0 200

- -
i R N T e,

exponentia|

N\

Even for small n,
exponential functions
quickly skyrocket and
guadratic functions
grow rapidly compared
to linear functions.

80

100

20

Alternate Visualization

Here's another way to think about the function families. Consider what happens when you
double the size of the input.

Constant

Logarithmic

Linear

Quadratic

Exponential

double input, no
change in actions

double input,
+1 action

double input,
double actions
double input,
quadruple actions

double input, many
many more actions!

Input Size

Actions Taken

v

v

Big-0O

When we determine a program or algorithm's runtime, we ignore
constant factors and smaller terms. All that matters is the dominant term
(the highest power of n), the function family. That is the idea of Big-O
notation.

f{n) Big-O | Unless specified otherwise, the
n O(n) Big-O of an algorithm refers to its
32n+ 23 O(n) worst case run time (computer
5n2 + 6n - 8 0(n?) scientists are pessimists).
18 log(n) O(log n)

Caveat: this is a simplified definition. If you take other CS
classes, you'll learn more about how Big-O actually works.

Because runtime for linear search is proportional to the length of the

list in the worst case, it is O(n). Every time we double the length of the
list, binary search does just one more comparison in the worst case; it
is O(log n).

— n
— log(n)

Time
20 40 60 80 100

0
I

0 20

40

60

80

100

Except for very small n,
binary search is blazingly
faster. Linear search is
exponentially slower in
the worst case!

We'll often need to calculate the Big-O of an algorithm or a piece of
code to determine how efficient it is and whether we can make it
better.

We can determine an algorithm's Big-O by determining how many
actions are added if we increase the size of the input. We can often do
a rough estimate of actions by just counting the number of statements
that will run.

Let's go through a bunch of examples to demonstrate.

def swap(lst, i, j): Does the runtime of this

tmp = 1st[i] algorithm depend on the
1st[i] = 1st[j] number of items in the list?
I1st[j] = tmp Answer: No.

We say that an algorithm is
constant time or O(1) when its
time does not change with the
size of the input.

26

def countDigits(
count = ©

while n > ©O:

n=mn//

count =

return count

n):

10
count + 1

Every time you increase n by a factor of 10,
you do the loop one more time. All the
operations in the loop are constant time.
Analogous to binary search, the algorithm is
logarithmic time, or O(log n).

Why? O(log 2n) = O(log n) + 1 - you add one
action per doubling of the input.

Even though this is log,,(n), we don't include

the base in the Big-O notation because a
change of base is just a multiplicative factor.

27

def countdown(n):

for 1 in range(n, -1, -5):

print(i)

If we double the size of n, how many
more times do we go through the
loop?

Answer: We double the number of
times through the loop. That is linear
time, or O(n), as it is proportional to
the size of n. Stepping by 5 doesn't
change the function family.

Note that O(2n) = O(n) + O(n)

28

def multiplicationTable(n):
for 1 in range(1l, n+l):
for j in range(1l, n+l):

pr‘int(i) "*".’ jJ -) i*j)

If we double the size of n, we execute the outer loop twice as many times.
And for each time we execute the outer loop, we execute the inner loop
twice as many times. Generating the table takes 4 times as long. This is
quadratic time, or O(n?).

Every time you add a new element, 1 action is added to each iteration of the
inner loop and 1 iteration is added to the outer loop (n+1 actions). That's
2n+1 new actions added. O((n+1)%) = O(n?) + 2n + 1.

29

O(2") is Exponential Time

def move(start, tmp, end, num): Thisis Towers of Hanoi. Every
if num == 1: time we add 1 disc we double the
¢ 1 number of moves. That's
return exponential time, or O(2").

else:
0 O(2"1) = O(2") + O(2")

moves
moves = moves + move(start, end, tmp, num - 1)
moves = moves + move(start, tmp, end, 1)

moves = moves + move(tmp, start, end, num - 1)
return moves

30

Is all recursion exponential? Not necessarily! It depends on the number of recursive calls
the function will need to make.

def countdown(n):
if n <= 0:
print("Finished!")
else:
print(n)
countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be made.

The function is O(n).

31

Be Careful of Built-in Runtimesl!

def countAll(1lst):
for 1 in range(len(1lst)):
count = lst.count(i)
print(i, "occurs", count, "times")

This is actually O(n?), because each call to 1st.count (i) takes O(n) time.

We'll let you know on assignments and quizzes when a built-in method or
operation is not constant time.

32

Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code.

def sumEvens(lst): # n = len(lst)
result = 0
for 1 in range(len(lst)):
if 1st[i] % 2 == @:
result = result + 1lst[i]
return result

33

* |dentify the worst case and best case inputs of functions

 Compare the function families that characterize different functions

 Calculate a specific function's efficiency using Big-O notation

* Feedback: http://bit.ly/110-s21-feedback

34

http://bit.ly/110-s21-feedback

