
Recursion II &
Search Algorithms

15-110 – Friday 03/05

Announcements

• Check3 due Monday at noon

• Check2/Hw2 revision deadline Tuesday at noon

• Quiz2 on next Wednesday
• Practice materials are now available

• New practice option: OLI practice problems with feedback! See Piazza post
for more details

2

Learning Objectives

• Trace over recursive functions that use multiple recursive calls with
Towers of Hanoi

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for items
in sorted lists

3

Multiple Recursive Calls

4

Multiple Recursive Calls

So far, we've used just one recursive call to build up a recursive answer.

The real conceptual power of recursion happens when we need more
than one recursive call!

Example: Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.

images from
Wikipedia

5

8 13 21

Code for Fibonacci Numbers

The Fibonacci number pattern goes as follows:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2), n > 1

def fib(n):
if n == 0 or n == 1:

return n
else:

return fib(n-1) + fib(n-2)

6

Two recursive calls!

Fibonacci Recursive Call Tree

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

7

fib(1)

fib(1) fib(0)

fib(2)

fib(3)

fib(5)

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

5

3

1

2

1 0

1 1

2

1 0

1

1 0

1

Fibonacci Recursive Call Tree

22 8

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Another Example: Towers of Hanoi

Legend has it that long ago at a temple far away, a priest was led to a courtyard with 64
discs stacked in size order on a sacred platform.

The priest needed to move all 64 discs from this sacred platform to the second sacred
platform, but there was only one other place (let's say a sacred table) on which they could
temporarily place the discs.

The priest could move only one disc at a time, because they're heavy. And they could not
put a larger disc on top of a smaller disc at any time, because the discs were fragile.

According to the legend, the world would end when the priest finished their work.

How long will this task take?
9

Solving Hanoi – Use Recursion!

It's difficult to think of an iterative strategy
to solve the Towers of Hanoi problem.
Thinking recursively makes the task easier.

The base case is when you need to move
one disc. Just move it directly to the end
platform.

Then, given N discs:

1. Delegate moving all but one of the
discs to the temporary platform.

2. Move the remaining disc to the end
platform.

3. Delegate moving the all but one pile to
the end platform.

10

Solving Hanoi - Code
Prints instructions to solve Towers of Hanoi and
returns the number of moves needed to do so.
def moveDiscs(start, tmp, end, discs):

if discs == 1: # 1 disc - move it directly
print("Move one disc from", start, "to", end)
return 1

else: # 2+ discs - move N-1 discs, then 1, then N-1
moves = 0
moves = moves + moveDiscs(start, end, tmp, discs - 1)
moves = moves + moveDiscs(start, tmp, end, 1)
moves = moves + moveDiscs(tmp, start, end, discs - 1)
return moves

result = moveDiscs("left", "middle", "right", 3)
print("Number of discs moved:", result)

11

Activity: Towers of Hanoi Steps

Our original question was: how many steps will it take to move 64
discs?

We can calculate this by asking a different question: if we add one disc
to a Towers of Hanoi set, how does that affect the total number of
steps that need to be taken?

Discuss with your breakout group.

12

Number of Moves in Towers of Hanoi

Every time we add another disc to the tower, it doubles the number of
moves we make.

It doubles because moving N discs takes moves(N-1) + 1 + moves(N-1) total
moves.

We can approximate the number of moves needed for the 64 discs in the
story with 264. That's 1.84 x 1019 moves!

If we estimate each move takes one second, then that's (1.84 x 1019) /
(60*60*24*365) = 5.85 x 1011 years, or 585 billion years! We're safe for now.

13

Linear Search

14

Searching for Items

Search is one of the most common tasks a computer needs to do. We'll discuss it in
depth this week and will revisit the concept several more times in this unit.

Suppose we want to determine whether a list contains a specific value. We know
that the in operator can check this for us, but what algorithm does in implement?

We'll need to think about this from a computer's perspective...
15

How Computers See Lists

If we ask a computer to check if a value is in a list, it sees the whole list
as a series of not-yet-known values:

In order to determine if the value is one of them, it needs to check
each item in turn.

S T E L L A

"S" "T" "E" "L" "L" "A"

16

For Loop Search Function

We can use a for loop to implement this approach as code. We call this linear search,
because it searches all items in a linear order.

def linearSearch(lst, target):

for i in range(len(lst)):

if lst[i] == target:

return True

return False

Note that we can return True as soon as we find the target value, but we can't return
False until we've examined all the values.

Question: If target appears more than once in lst, which value will cause the
function to return?

17

Sidebar: Check-Any and Check-All Patterns

Search follows a common pattern for functions that use a loop to return a
Boolean.

A check-any pattern returns True if any of the items in the list meet a
condition, and False otherwise.

A check-all pattern returns True if all of the items in the list meet a
condition, and False otherwise.

def checkAny(lst, target):
for i in range(len(lst)):

if lst[i] == target:
return True

return False

def checkAll(lst, target):
for i in range(len(lst)):

if lst[i] != target:
return False

return True
18

Recursive Linear Search Algorithm

What's the base case for linear search?

Answer: an empty list. The item can't possibly be in an empty list, so
the result is False.

Also: a list where the first element is what we're searching for, so the result
is True.

How do we make the problem smaller?

Answer: call the linear search on all but the first element of the list.

How do we combine the solutions?

Answer: no combination necessary. The recursive call returns whether the
item occurs in the rest of the list; just return that result unmodified.

19

Recursive Linear Search Code

def recursiveLinearSearch(lst, target):

if lst == []:

return False

elif lst[0] == target:

return True

else:

return recursiveLinearSearch(lst[1:], target)

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "rabbit"))

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "horse"))

20

Alternative to Linear Search

Linear Search is a nice,
straightforward approach to
searching a set of items. But that
doesn't mean it's the only way to
search.

Assume you want to search a
dictionary to find the definition of
a word you just read. Would you
use linear search, or a different
algorithm?

21

Can we take advantage of
dictionaries being sorted?

Binary Search

22

Binary Search Divides the List Repeatedly

In Linear Search, we start at the beginning of a list and check each
element in order. So if we search for 98 and do one comparison...

In Binary Search on a sorted list, we'll start at the middle of the list and
eliminate half the list based on the comparison we do. When we
search for 98 again...

23

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

2 5 10 20 42 56 67 76 89 952 5 10 20 42 56 67 76 89 95

Many more #s have been eliminated!

Algorithm for Binary Search

Algorithm for Binary Search:

1. Find the middle element of the list.

2. Compare the middle element to the target.

a) If they're equal – you're done!

b) If the item is smaller – recursively search to the left of the
middle.

c) If the item is bigger – recursively search to the right of the
middle.

24

Example 1: Search for 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found: return True

Example 2: Search for 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Not found: return False

Activity: Trace Binary Search

You do: determine the correct trace for the following call to binary search. Which numbers
are visited?

binarySearch([2, 7, 11, 18, 19, 32, 45, 63, 84, 95, 97], 95)

27

Base Case and Recursive Case of Binary Search

What are the base cases for binary search?

Answer: an empty list. The target can't possibly be in an empty list, so the
result is False.

Also: a list where the target is the middle element. Then we can stop
searching and immediately return True.

How do we make the problem smaller?

Answer: get rid of the half of the list we know the target isn't in (which half?).

How do we combine the solutions?

Answer: no need to combine anything. Simply return the result of the
recursive function call.

28

Binary Search in Code

Now we just need to translate the algorithm to Python.

def binarySearch(lst, target):

if ____ # base case

return _____

else:

Find the middle element of the list.

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.
29

Binary Search in Code – Base Case

The first base case is the empty list, and return False

def binarySearch(lst, target):

if lst == []:

return False

else:

Find the middle element of the list.

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.
30

Binary Search – Middle Element

To get the middle element, use indexing with half the length of the list.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

31

Use integer division in case
the list has an odd length

Binary Search – Base Case

The second base case occurs when we find the target. Return True.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

32

Binary Search – Comparison

Use an if/elif/else statement to decide which side to use for the smaller problem.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

________ # recursively search to the left of the middle

else: # lst[midIndex] < target

________ # recursively search to the right of the middle

33

Binary Search – Recursive Calls

Use slicing to make the recursive call and return the result immediately.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

return binarySearch(lst[:midIndex], target)

else: # lst[midIndex] < target

return binarySearch(lst[midIndex+1:], target)

34

Linear Search vs. Binary Search

Why should we go through the effort of writing this more-complicated
search method?

Answer: efficiency. Binary search is vastly more efficient than linear search,
as it performs a lot fewer comparisons to find the same item.

In the next class, we'll introduce a way to compare the efficiency of
algorithms more formally.

But note, binary search only works on sorted lists!

35

Learning Objectives

• Trace over recursive functions that use multiple recursive calls with Towers
of Hanoi

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for items in
sorted lists

• Feedback: http://bit.ly/110-s21-feedback

36

http://bit.ly/110-s21-feedback

