Recursion

15-110 — Wednesday 03/03

* Reminder about OH expectations
* Make sure to put a Zoom link after your question on the queue

* If there are others on the queue, only ask one question per queue slot and expect
the TA to spend only 5min with you

 Start by explaining what you've tried so far and what you think the problem is

* Reminder about collaboration expectations
* You should only look at another student's code when you're helping them debug

* That means you shouldn't screen-share your IDE unless you're actively getting
debugging help

* Collaborating is great, but when you write up your own solution you should not
consult anyone else's solution!

* Define and recognize base cases and recursive cases in recursive code

 Read and write basic recursive code

Concept of Recursion

Concept of Recursion

Recursion is a concept that shows up commonly in computing and in
the world.

Core idea: an idea X is recursive if X is used in its own definition.

]] College Prep
Example: fractals; nesting dolls; your computer's file system | —=- epra

w77t S
] r College Readiness
eca (] cos432-hw-clevel i mﬂﬂﬂll da Edition
(212 52 = [mi) (3) (9] b CE— &
FAVORITES [EI ITHIM . [apps » [0 agenda » [autograder "
= — [becellint » [BACKUP " deploywebsite.sh
% Dropbox T helloGrading.pdf -
b B nelloCrading e [0 codejail ¥ 8 cosd32-hw-devel [01 HWL f
= Al My Files & imroce 9- . [codevaulr » | cosd32Assignments [HW2 .
AirDrop (3 common [grading + [Hw3 L
(] Movies »
(1 copied [Hw2 [HWa f
[Desktop (] Music »
o & od . [cos126 » " meetingplanning (] HW4_new S
/A Applicati... B Pictures . [cos226 F o, moo [Hws »
[Documents Y primes.py (] cos432 » [notes » |5 README
© Downloads | (3] public . = dkunisky.ps I oldhwl (] sampleSolutions 5
K & hwo.docx | orgMeetingAgenda [save L
I3 Music & saus " &l misc F outputpackLzi B8 secureComm »
songl.mp3 =] outputpackl.zip
E Movies B song2.mps (7 nifty » ¥ outputpack2.zip (] web "
Pictures = lem!; me . [onlineCourses + b outoutpack3.zip
(1 profdef [pass »
i t
(2 craigs S ‘Z’O"‘EDWV : (1 professional » | Questions for Ed
SHARED *) toy.conf [ZJ programmin » 1 scheduling
i s : un”;'pv &3 reimb » [website)
-) service & klymetet
[VirtalBox VMs , = " | weeklymeteting
DEVICES 3 work o [tools »

(&) Remote... |2l Macintosh HD » (] Users » 4} jug » [] work » (] cos432 » [] cos432-hw-devel

Recursion is a hard concept to master because it is different from how
we typically approach problem-solving.

But recursion also makes it possible for us to solve some problems with
simple, elegant algorithms. It also lets us think about how to structure
data in new ways.

AL AL AL AL L)

We'll start by using recursion to solve very simple problems, then show
how it applies more naturally to complex problems next time.

When we use recursion in algorithms, it's generally used to implement
delegation in problem solving, sometimes as an alternative to iteration.

To solve a problem recursively:
1. Find a way to make the problem slightly smaller
2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with solution to the
remaining part of the problem to get the answer

How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the cards,
add each to the total.

Recursive approach: take a card off the deck, delegate adding the rest
of the deck to someone else, then when they give you the answer, add
the remaining card to their sum.

Let's look at how we'd add the deck of four cards using iteration.

Pre-Loop:

total | 0

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

total

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

total

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

total 14

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

total 17

cards | 5 2 7 3 And we're done!

Iteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):
total = ©
for 1 in range(len(cards)):
total = total + cards[i]
return total

14

Now let's add the same deck of cards using recursion.

Start State:

total | 0

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Make the problem smaller:

total I 0

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

total I 0

cards | 5 2 7 3

This is the Recursion
Genie. They can solve
problems, but only if
the problem has been
made slightly smaller
than the start state.

Now let's add the same deck of cards using recursion.

Get the smaller problem's solution:

total I 0

12

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

total I 17 .

cards I 5 2 7 3

And we're done!

Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):
smallerProblem = cards[1:]
??? # how to call the genie?

smallerResult
return cards[@] + smallerResult

20

Base Cases and Recursive Cases

We don't need to make a new algorithm to implement the Recursion Genie. Instead,
we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, the
problem reaches a state where we can't make it smaller. We'll call that the base case.

C) 3

g ¥

When the problem gets to the base case, the answer is immediately known. For
example, in adding a deck of cards, the sum of an empty deck is O.

That means the base case can solve the problem without delegating. Then it can
pass the solution back to the prior problem-solver and start the chain of solutions.

5 +

2 +

5 2 7 3

C) 2

Recursion in Code — Recursive Call

To update our recursion code, we'll take two steps. First, we need to
add the call to the function itself.

def recursiveAddCards(cards):
smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[@] + smallerResult

24

Recursion in Code — Base Case

Second, we add in the base case as an explicit instruction about what
to do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
if cards == []:
return 0
else:
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)
return cards[@] + smallerResult

25

The two big ideas we just saw are used in all recursive algorithms.

1. Base case(s) (non-recursive):
One or more simple cases that can be solved directly (with no further work).

2. Recursive case(s):
One or more cases that require solving "simpler" version(s) of the original problem.
By "simpler" we mean smaller/shorter/closer to the base case.

l[dentifying Cases in addCards(cards)

Let's locate the base case and recursive case in our example.

def recursiveAddCards(cards):

recursive
case

==

return 9

if cards == []:
base case

else:

— smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)

_ return cards[0@] + smallerResult

27

Recall how we used the call stack to keep track of nested function calls.

Python also uses the call stack to track recursive calls!

Because each function call has its own set of local variables (which
includes function parameters), the values across functions don't get
confused.

Let's switch to a different slide deck for an example.

Let's write an algorithm that takes a binary number (like "10110") and
converts it to decimal (21). Our algorithm will only use recursion; no
loops allowed.

You do: in general terms, what is the base case for this problem? And
in the recursive case, how do we make the problem smaller? You don't
need to write code, just consider the algorithmic cases.

Hint: consider how you converted binary to decimal in week1.

Programming with Recursion

General Recursive Form

Thinking of recursive algorithms can be tricky at first. However, most of the
simple recursive functions you write can take the following form:

def recursiveFunction(problem):
if problem == ???: # base case is the smallest value
return _ # something that isn't recursive
else:
smallerProblem = ??? # make the problem smaller
smallerResult = recursiveFunction(smallerProblem)
return # combine with the leftover part

31

When you write a recursive function, always remember that the base
case must return the same type as the recursive case.

If the types are different, you'll have a problem combining the next step
with the smaller-result because the type of the smaller-result will be
inconsistent.

Also make sure that you always provide the correct type in the
argument given to the recursive function call. It must match the type of

the function's parameter.

Assume we want to implement What's the base case?
factorial recursively (takes an int,

X ==
returns an int). Recall that:

What's the smaller problem?

X! = x*(x-1)*(x-2)*...*2*1
X -1

We could rewrite that as... o
How to combine it?

| K (x-1)! Multiply result of (x-1)! by x
x! = X x-1)!

33

Writing Factorial Recursively

We can take these algorithmic components and combine them with the
general recursive form to get a solution.

def factorial(x):
if x == 1: # base case
return 1 # something not recursive

else:
smaller = factorial(x - 1) # recursive call

return X * smaller # combination

34

What hapg)ens if you call a function on an input that will never reach the
base case? It will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function calls have been added to the stack.
If it sees there are too many calls, it raises a RecursionError to stop your
code from repeating forever.

If you encounter a RecursionError, check a) whether you're making the

problem smaller each time, and b) whether the input you're using will ever
reach the base case.

Example: countVowels(s)

Let's do another example. Write the function countVowels(s) that takes a
string and recursively counts the number of vowels in that string, returning

an int. For example, countVowels("apple") would return 2.

def countVowels(s):

if : # base case
return

else: # recursive case
smaller = countVowels()

return

36

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's behavior
based on whether the letter is a vowel or not.

def countVowels(s):
if s == "": # base case
return ©
else: # recursive case
smaller = countVowels(s[1l:])
if s[0] in "AEIOU":
return 1 + smaller
else:
return smaller

37

Example: countVowels(s)

An alternative approach is to make multiple recursive cases based on the
smaller part.

def countVowels(s):

if s == "": # base case
return 0

elif s[@] in "AEIOU": # recursive case
smaller = countVowels(s[1:])
return 1 + smaller

else:
smaller = countVowels(s[1:])
return smaller

38

Example: removeDuplicates(1st)

Let's do one final example. Write the function removeDuplicates(1lst) that
takes a list of items and recursively generates a new list that contains only one of
each unique item from the original list. For example, removeDuplicates([1,
2, 1, 2, 3, 4, 3, 3]) mightreturn[1, 2, 3, 4].

def removeDuplicates(1lst):
if : # base case

return

else: # recursive case
smaller = removeDuplicates()

return

39

Example: removeDuplicates(1st)

The recursive case generates a list that holds only unique elements. Just check
whether the remaining element is already in that list or not!

def removeDuplicates(lst):
if 1st == []: # base case
return []
else: # recursive case
smaller = removeDuplicates(lst[1l:])
if 1st[@] in smaller:
return smaller
else:
return [1st[@]] + smaller

40

You do: Write recursiveMatch(1lstl, 1st2), which takes two lists of
eqlual Ienlgtljcgnd returns the number of indexes where 1st1 has the same
value as 1st2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6])
should return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. Write
a sollutlon that should work assuming the recursive call gives the proper
result.

41

* Define and recognize base cases and recursive cases in recursive code

 Read and write basic recursive code

* Feedback: http://bit.ly/110-s21-feedback

42

http://bit.ly/110-s21-feedback

