
References and Memory
15-110 – Monday 03/01

Announcements

• Hw2 was due today
• How did it go?

2

Learning Goals

• Recognize whether two values have the same reference in memory

• Recognize the difference between mutable vs immutable data types

• Recognize the difference between destructive vs. non-destructive
functions/operations

• Use aliasing to write functions that destructively change lists

3

References and Memory

4

Computer Memory Holds Data

Recall from the Data Representation lecture that all data on your computer is
eventually represented as bits (0s and 1s). Your computer's memory is a very
long sequence of bytes (8 bits), which are interpreted with different
abstractions to become different types. Each byte has its own address.

When you write a Python program, every variable you create is associated
with a different segment of memory. The way variables connect to memory
becomes more complicated when we use data structures.

5

31 35 31 31 30 4B 65 6C C6 79 4D 61 72 67 61 72 65 74

0000 0004 0008 0012 0016

References are Memory Addresses

A reference (often called a pointer) is a specific address in memory. References are
used to connect variables to their values.

When we set a variable equal to a value, we keep the variable and value one step
apart. The variable only has access to a reference, which points to the value. If
Python goes to the reference's address, it can retrieve the value stored there.

6

s a b

Memory:

Variables:

Hello 4 3.5

s = "Hello"
a = 4
b = 3.5

Updating a Variable Changes the Reference

When we set a variable to a new value, Python makes a new data value
and reassigns the variable to reference the new value. It does not
change the old value in memory at all.

7

s

Hello Hello WorldMemory:

Variables:
s = "Hello"
s = s + " World"

Analogy: Lockers and Nametags

You can think of Python's memory as
a series of lockers, each with its own
number. The item inside a locker is
the data value it holds.

A variable is then a nametag sticker.
When you stick a nametag onto a
locker, it 'points to' the item in that
locker. If you move the nametag onto
a different locker, the original
locker's contents don't change.

8

Copying a Variable Copies the Reference

What happens when we set a new variable equal to an old one? We
don't need to create a new data value in a new memory address;
Python just copies the reference instead.

This is like taking a new nametag and putting it on the same locker as
another nametag.

9

s

Hello World

t

Memory:

Variables:
s = "Hello World"
t = s

Check References with is

If you want to check whether two variables share the same reference, you can use
the is operator. It returns True if two variables reference the same memory and
False otherwise.

a = "Hello"
b = a
c = "World"

print(a is b) # True
print(a is c) # False

10

Lists Take Up Adjacent Addresses

When we set a variable to a list (or another data structure), Python sets
aside a large place in memory for the data values it will hold.

By breaking up that large chunk of memory into parts, Python can
assign each value in the list a location, ordered sequentially.

x = [1, 2, 3]

11

x

1 2 3Memory:

Variables:

Technically each index also holds
a reference to a new location, but
that's out of scope for this course

Analogy: A List is a Locker With Shelves

You can think of the list memory as a
single locker (the starting reference)
broken up with several shelves.

Each shelf can hold its own item
(data value) and has its own
reference.

This allows us to change memory in
new and interesting ways.

12

Mutable vs Immutable Values

13

List Values Can Be Changed

Unlike the previous types we've worked with, the values in a list can be
changed directly without reassigning the variable. This is what the list
methods we saw last time did.

We can also change a list by setting a list index to a new value, like how
we would set a variable to a value.

lst = ["a", "b", "c"]

lst[1] = "foo"

print(lst) # ["a", "foo", "c"]

14

Modifying Lists in Memory

How does this work? The large space set aside for the list values allows
Python to add and remove values from the list without running out of room
in memory. It's like having tons of empty shelves in the locker and putting
the item on one of them.

This makes it easy (and fast!) to locate a specific value based on its index.

x = [1, 2, 3]

x.append(7)

print(x[1])

15

1 2 3 7

x

Memory:

Variables:

Lists are Mutable; Strings are Immutable

We call data types that can be modified without reassignment this way
mutable. Data types that cannot be modified directly are called immutable.

All the other data types we've learned about so far – integers, floats,
Booleans, and strings – are immutable. In fact, if we try to set a string index
to a new character, we'll get an error. We have to set the entire variable
equal to a new value if we want to change the string.

s = "abc"

s[1] = "z" # TypeError

s = s[:1] + "z" + s[2:]

16

Copying Lists in Memory

We showed before that when we copy a variable into a new variable, the reference
is copied, not the value.

This is true for lists as well; an example is shown below.

17

x

1 2 3

yx = [1, 2, 3]
y = x

You do: what happens to the values in x and y if we add the line y.append(4) to
the end of this code snippet?

Memory:

Variables:

Reference-Sharing Lists Share Changes

When a direct action is done on a list, that action affects the data values, not the
variable. Any lists that share a reference with the original list will see the same changes!

We call lists that share a reference this way aliased.

18

x

1 2 3

y

4Memory:

Variables:
x = [1, 2, 3]
y = x
y.append(4)

Copying Variables vs. Copying Values

Two variables won't be aliased just because they contain the same values.
Their references need to point to the same place for them to be aliased.

In the following example, the lack of a reference copy keeps the list z
from being aliased to x and y.

19

x

1 2 3

y

1 2 3

z

4

x = [1, 2, 3]
y = x
z = [1, 2, 3]
x.append(4) Memory:

Variables:

Destructive vs. Non-destructive

20

Two Ways of Modifying Lists

Whenever we want to modify a list (by changing a value, adding a value, or
removing a value), we can choose to do so destructively or non-destructively.

Destructive approaches change the data values without changing the variable
reference. Any aliases of the variable will see the change as well, since they
refer to the same list.

Non-destructive approaches make a new list, giving it a new reference. This
'breaks' the alias and doesn't change the previously-aliased variables.

21

Destructive Methods are Efficient

Why would we ever want to use a destructive approach instead of a
simpler non-destructive approach?

Destructive approaches are more efficient. Instead of needing to copy
all the values into a new place in memory, you only change a small part
of the existing memory. This saves time and space in memory.

22

Two Ways to Add Values

How do we add a value to a list destructively? Use append, insert, or +=.

lst = ["A", "B", "C"]

lst.append("E")

lst.insert(0, "foo") # specifies where to add the value

lst += ["F", "G"] # Annoyingly different from lst = lst + ["F", "G"]

How do we add a value to a list non-destructively? Use variable assignment with list concatenation.

lst = ["A", "B", "C"]

lst = lst + ["E"] # note that "E" needs to be in its own list

lst = ["foo"] + lst

lst = lst + ["F", "G"]

23

Two Ways to Remove Values

How do we remove a value from a list destructively? Use remove or pop.

lst = ["A", "B", "C"]
lst.remove("A") # remove the value "A"

lst.pop(1) # remove the value at index 1

How do we remove a value from a list non-destructively? Use variable assignment
with list slicing.

lst = ["A", "B", "C"]

lst = lst[1:]

lst = lst[:len(lst)-1]

24

Break an Alias with List Concatenation

If you have two variables that are aliased and you don't want them to be aliased,
you need to 'break' the alias between them. This is done by setting one of the
variables equal to a new data value with the same values as the original list.

The easiest way to do this is to concatenate the empty list to the original list.
Python doesn't recognize that the second list is empty, so it will create an entirely
new list in memory.

a = ["A", "B", "C"]

b = a # a and b are aliased

a = a + [] # a now has a new reference, but the same values

25

Activity: Which Lists are Aliased?

At the end of this set of operations, which lists will be aliased? What values
will each variable hold?

a = [1, 2, "x", "y"]
b = a
c = [1, 2, "x", "y"]
d = c
a.pop(2)
b = b + ["woah"]
c[0] = 42
d.insert(3, "yowza")

26

Destructive Looping: for vs. while

It is a very bad idea to destructively add or
remove elements in a list while looping
over it with a for loop.

This will often lead to unexpected and bad
behavior because the range is only
calculated once.

lst = ["a", "a", "c", "d", "e"]
for i in range(len(lst)):

if lst[i] == "a" or \
lst[i] == "e":
lst.pop(i)

Instead, use a while loop if you're planning
to destructively change the list length. The
list length is reevaluated when the while
condition is checked each iteration.

lst = ["a", "a", "c", "d", "e"]
i = 0
while i < len(lst):

if lst[i] == "a" or \
lst[i] == "e":
lst.pop(i)

else:
i = i + 1

27

Destructive Looping: break to exit early

What if you want to destructively remove exactly one element from a list, then exit
the loop immediately before you remove any others?

It's possible to design a loop control variable to do this, but it's often easier to use
the break statement instead. As soon as the code reaches a break, it immediately
exits the loop. (If loops are nested, it only exits the innermost loop).

lst = ["a", "a", "c", "d", "e"]
for i in range(len(lst)):

if lst[i] == "a":
lst.pop(i)
break # exits immediately, only removes one "a"

28

Writing Destructive Functions

29

Function Arguments/Parameters are Aliased

When you call a function with a mutable value as one of the arguments, that argument is
aliased to the function's parameter variable. The same reference is used for the original
argument and the parameter that the function uses.

This means that we can write our own functions that behave destructively, changing the
data values in the given list directly instead of making a new list. This is valuable when we
work with large datasets, as we usually don't want to copy all the values every time we
make a change.

def foo(lst):
lst[1] = "bar"

x = [1, 2, 3]
print(foo(x)) # when lst is created, it copies x's reference
print(x) # now 2 has been replaced with "bar"

30

Sidebar: PythonTutor Helps Trace Aliases

If you're having trouble tracing code that uses aliases it may help to use
PythonTutor (http://pythontutor.com/). This website lets you walk
through your code's execution step-by-step and shows you which
variables share references.

31

http://pythontutor.com/

Destructive Functions Use Mutable Methods

When writing a destructive function, use index assignment and the mutable methods
(append, insert, pop, and remove) on the parameter list to change it as needed.

For example, the following code destructively doubles all the values in the given list of
integers. Note that the function need not return lst because the parameter lst and the
argument x refer to the same values. We usually have destructive functions return None as
an indicator that they're destructive.

def destructiveDouble(lst):
for i in range(len(lst)):

lst[i] = lst[i] * 2

x = [1, 2, 3]
destructiveDouble(x)
print(x)

32

Non-Destructive Functions Make New Lists

If you want to make a function that is not destructive, you should instead set up a new list and fill it with
the appropriate values. To be non-destructive, the parameters must not be changed.

The following code non-destructively creates a new list of all the doubles of values in the original list. This
function does need to return the result, as the parameter is not changed. After the call to the function, the
variable x will not have changed; y refers to the new list with all the values doubled.

def nonDestructiveDouble(lst):
result = []
for i in range(len(lst)):

result.append(lst[i] * 2)
return result

x = [1, 2, 3]
y = nonDestructiveDouble(x)
print(x, y)

33

Activity: makePositive(lst)

The following non-destructive function takes a list of integers and turns any
negative values in the list into their positive counterparts. Change the function so
that it is destructive instead.

def makePositive(lst):
result = []

for i in range(len(lst)):

if lst[i] < 0:

result.append(lst[i] * -1)
else:

result.append(lst[i])

return result

34

Learning Goals

• Recognize whether two values have the same reference in memory

• Recognize the difference between mutable vs immutable data types

• Recognize the difference between destructive vs. non-destructive
functions/operations

• Use aliasing to write functions that destructively change lists

• Feedback: http://bit.ly/110-s21-feedback

35

http://bit.ly/110-s21-feedback

