LIStS

15-110 — Friday 02/26

Announcements

* Quizl scores & feedback have been released
e Median: 88.25. Well done!

* View your submission and feedback on Gradescope, not Canvas

37.0 88.25 100.0 86.86 1.4

 Hw2 due Monday at noon. There's a lot of coding. Start early!

. OpEortunity to change breakout room groups — fill out the form if you have an opinion.
Link: https://forms.gle/XM4cHgDGgaKYo5Fx8

https://forms.gle/XM4cHqDGqaKYo5Fx8

* Read and write code using 1D and 2D lists

* Use list methods to change lists without variable assignment

Lists

A list is a data structure that holds an ordered collection of data values.

Sign In Here
0. Elena

1. Max

2. Eduardo
3.lyla

4. Ayaan

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of
data using only one variable.

List Syntax

We use square brackets to set up a list in Python.

a =[] # empty list
. "uno", "dos", "tres"] # list with three strings
c = [1, "dance", 4.5] # lists can have mixed types

o
1

Basic List Operations

Lists share most of their basic operations with strings.

Q N O©C W
I

This includes indexing and slicing.

1St — [Ilall, Ilbll, IICIIJ Ildll]
print(1lst[1]) # indexing - prints "b"

print(1lst[2:]) # slicing - prints ["c", "d"]

d

J

1, 2 1+ [3, 4] # concatenation - [1, 2, 3, 4]
= ["a", "b"] * 3 # repetition - ["a", "b",
=[1, 5] <[2, 4] # comparison/equality - True
= 4 in ["a", "b", 1, 2] # membership - False

llbll,

d

, b]

List Functions and Methods

There are a few useful built-in functions that work directly on lists.

len(lst) # the number of elements in 1st

min(lst)/max(1lst) # the smallest/largest element in 1lst
sum(lst) # the sum of the elements in 1lst

There are also some list methods which are called directly on the list, like string
methods.

lst.count(element) # the number of times element occurs in 1lst
lst.index(element) # the first index of element in 1st

Looping Over Lists

Looping over lists works the same way as with strings. We can use a for
loop over the indexes of the list to access each item. For example, the
following loop sums all the values in prices.

total = ©

for 1 in range(len(prices)):
total = total + prices[i]

print(total)

Use s.split(c) to Turn Strings Into Lists

We'll also use a new string method, s.split(c),to split up a string into a new list based
OQ a isepara;tor character, c. This is highly useful for working with text data (books, scripts,
chat logs...).

def findName(sentence, name):
words = sentence.split(" ")
for 1 in range(len(words)):
if words[i] == name:
return True
return False

findName("Ask Tom to phone Nina", "Tom")
WOPdS hOldS [IIASkII, llTomlI) |l_toll, llphonell, llNinall]

10

Activity: Predict the Result

What will be printed after each of the following code snippets?
Ist = ["a", "b", 1, 2]

print(1st[1]) # Q1

< = mm

for i in range(len(a)):

s = s + str(a[i])
print(s) # Q2

11

Example: findMax(nums)

Let's write a function that finds the maximum value in a list of integers (without
using the built-in max function).

def findMax(nums):
biggest = nums[@] # why not ©? Negative numbers!

for i1 in range(len(nums)):
if nums[i] > biggest:
biggest = nums[i]

return biggest

We'll often use this algorithmic structure to find the biggest/best item in a
structure.

12

2D Lists

We often need to work with data
that is two-dimensional, such as the
coordinates on a grid, values in a
spreadsheet, or pixels on a screen.
We can store this type of data in a
2D list, which is just a list that
contains other lists.

For example, the 2D list to the right
holds population data, where each
population datapoint itself contains
multiple data values (city, county,
and population).

Population List

0. | 0. "Pittsburgh"
. "Allegheny"
2. 302407

[EEY

1. | 0. "Philadelphia"
1. "Philadelphia"
2. 1584981

2. 0. "Allentown"
1. "Lehigh"
2.123838

3. 0. "Erie"
1. "Erie"
2.97639

. "Scranton"
1. "Lackawanna"
2.77182

Syntax of 2D Lists

Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh"”, "Allegheny", 302407],
("Philadelphia", "Philadelphia", 1584981],
"Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

"Scranton”, "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second
index into a column. The length of a 2D list is the number of lists in the outer list.

cities[2] # ["Allentown", "Lehigh", 123838 |
cities[2][1] # "Lehigh"
len(cities) # 5

15

Looping Over 2D Lists

We can loop over a 2D list the same way we loop over a list. Indexing into a

list once will produce an inner list. We'll need to index a second time to get a
value.

def getCounty(cities, cityName):
for 1 in range(len(cities)):
entry = cities[i] # entry is a list
if entry[@] == cityName:
return entry[1]
return None # city not found

16

Looping Over All 2D List Elements

When you loop over a 2D list and want to access every element, you need to use nested for loops.
Often, the outer loop iterates over the indexes of the outer list (rows) and the inner loop iterates over
the indexes of the inner list (columns).

gameBoard = [["X", " ", "Oo"], [" ", "X", " "], [" ", "™ ", "O"]]

for row in range(len(gameBoard)): # each row is a list
boardString = ""

for col in range(len(gameBoard[row])): # each col is a string
boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

17

Activity: getTotalPopulation(cities)

Write the function getTotalPopulation(cities) that takes the city-
information 2D list from before and finds the total population of all cities in the list:

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],
["Allentown"”, "Lehigh", 123838],

["Erie", "Erie", 97639],

 "Scranton”, "Lackawanna", 77182]]

Hhint:?note that the population is in the third column. What index corresponds to
that:

18

List Methods

Some List Methods Change the List

Sometimes we want to modify a list directly, to add or remove elements
from it. There are a set of list methods that can do this without using
variable assighment at all.

st = [1, 2, "a"]
lst.append("b") # adds the element to the end of the list

Note that we do notset 1st = 1st.append;thelistis changed in place. In
fact, the append method returns None, not a list. We'll talk more about how
this works next time.

20

Example: getFactors(n)

Let's write a function that takes an integer and returns a list of all the factors
of that integer.

def getFactors(n):

factors = []
for num in range(l, n+l): # num 1is a possible factor

if n 7% num ==
factors.append(num)
return factors

21

Additional List Methods

Here are a few other useful list methods that change the list in place:

st = [1, 2, "a"]

1st.insert(1, "foo") # inserts 2" param into 15t param index
lst.remove("a") # removes the given element from the list once
lst.pop(@) # removes the element at given index from the list

22

* Read and write code using 1D and 2D lists

* Use list methods to change lists without variable assignment

* Feedback: http://bit.ly/110-s21-feedback

23

http://bit.ly/110-s21-feedback

