
Lists
15-110 – Friday 02/26

Announcements

• Quiz1 scores & feedback have been released
• Median: 88.25. Well done!
• View your submission and feedback on Gradescope, not Canvas

• Hw2 due Monday at noon. There's a lot of coding. Start early!

• Opportunity to change breakout room groups – fill out the form if you have an opinion.
Link: https://forms.gle/XM4cHqDGqaKYo5Fx8

2

https://forms.gle/XM4cHqDGqaKYo5Fx8

Learning Goals

• Read and write code using 1D and 2D lists

• Use list methods to change lists without variable assignment

3

Lists

4

Lists are Containers for Data

A list is a data structure that holds an ordered collection of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of
data using only one variable.

5

Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan

List Syntax

We use square brackets to set up a list in Python.

a = [] # empty list

b = ["uno", "dos", "tres"] # list with three strings

c = [1, "dance", 4.5] # lists can have mixed types

6

Basic List Operations

Lists share most of their basic operations with strings.

a = [1, 2] + [3, 4] # concatenation – [1, 2, 3, 4]

b = ["a", "b"] * 3 # repetition – ["a", "b", "a", "b", "a", "b"]

c = [1, 5] < [2, 4] # comparison/equality – True

d = 4 in ["a", "b", 1, 2] # membership – False

This includes indexing and slicing.

lst = ["a", "b", "c", "d"]

print(lst[1]) # indexing – prints "b"

print(lst[2:]) # slicing – prints ["c", "d"]

7

List Functions and Methods

There are a few useful built-in functions that work directly on lists.

len(lst) # the number of elements in lst
min(lst)/max(lst) # the smallest/largest element in lst

sum(lst) # the sum of the elements in lst

There are also some list methods which are called directly on the list, like string
methods.

lst.count(element) # the number of times element occurs in lst

lst.index(element) # the first index of element in lst

8

Looping Over Lists

Looping over lists works the same way as with strings. We can use a for
loop over the indexes of the list to access each item. For example, the
following loop sums all the values in prices.

total = 0

for i in range(len(prices)):

total = total + prices[i]

print(total)

9

Use s.split(c) to Turn Strings Into Lists

We'll also use a new string method, s.split(c), to split up a string into a new list based
on a separator character, c. This is highly useful for working with text data (books, scripts,
chat logs...).

def findName(sentence, name):

words = sentence.split(" ")

for i in range(len(words)):

if words[i] == name:

return True

return False

findName("Ask Tom to phone Nina", "Tom")

words holds ["Ask", "Tom", "to", "phone", "Nina"]

10

Activity: Predict the Result

What will be printed after each of the following code snippets?

lst = ["a", "b", 1, 2]

print(lst[1]) # Q1

s = ""
for i in range(len(a)):

s = s + str(a[i])
print(s) # Q2

11

Example: findMax(nums)

Let's write a function that finds the maximum value in a list of integers (without
using the built-in max function).

def findMax(nums):
biggest = nums[0] # why not 0? Negative numbers!

for i in range(len(nums)):

if nums[i] > biggest:

biggest = nums[i]
return biggest

We'll often use this algorithmic structure to find the biggest/best item in a
structure.

12

2D Lists

13

2D Lists are Lists of Lists

We often need to work with data
that is two-dimensional, such as the
coordinates on a grid, values in a
spreadsheet, or pixels on a screen.
We can store this type of data in a
2D list, which is just a list that
contains other lists.

For example, the 2D list to the right
holds population data, where each
population datapoint itself contains
multiple data values (city, county,
and population).

14

Population List

0.

1.

2.

3.

4.

0. "Pittsburgh"
1. "Allegheny"
2. 302407

0. "Philadelphia"
1. "Philadelphia"
2. 1584981

0. "Allentown"
1. "Lehigh"
2. 123838

0. "Erie"
1. "Erie"
2. 97639

0. "Scranton"
1. "Lackawanna"
2. 77182

Syntax of 2D Lists

Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second
index into a column. The length of a 2D list is the number of lists in the outer list.

cities[2] # ["Allentown", "Lehigh", 123838]

cities[2][1] # "Lehigh"

len(cities) # 5

15

Looping Over 2D Lists

We can loop over a 2D list the same way we loop over a list. Indexing into a
list once will produce an inner list. We'll need to index a second time to get a
value.

def getCounty(cities, cityName):

for i in range(len(cities)):

entry = cities[i] # entry is a list

if entry[0] == cityName:

return entry[1]

return None # city not found

16

Looping Over All 2D List Elements

When you loop over a 2D list and want to access every element, you need to use nested for loops.
Often, the outer loop iterates over the indexes of the outer list (rows) and the inner loop iterates over
the indexes of the inner list (columns).

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]

for row in range(len(gameBoard)): # each row is a list

boardString = ""

for col in range(len(gameBoard[row])): # each col is a string

boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

17

Activity: getTotalPopulation(cities)

Write the function getTotalPopulation(cities) that takes the city-
information 2D list from before and finds the total population of all cities in the list:

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

Hint: note that the population is in the third column. What index corresponds to
that?

18

List Methods

19

Some List Methods Change the List

Sometimes we want to modify a list directly, to add or remove elements
from it. There are a set of list methods that can do this without using
variable assignment at all.

lst = [1, 2, "a"]

lst.append("b") # adds the element to the end of the list

Note that we do not set lst = lst.append; the list is changed in place. In
fact, the appendmethod returns None, not a list. We'll talk more about how
this works next time.

20

Example: getFactors(n)

Let's write a function that takes an integer and returns a list of all the factors
of that integer.

def getFactors(n):

factors = []

for num in range(1, n+1): # num is a possible factor

if n % num == 0:

factors.append(num)

return factors

21

Additional List Methods

Here are a few other useful list methods that change the list in place:

lst = [1, 2, "a"]

lst.insert(1, "foo") # inserts 2nd param into 1st param index

lst.remove("a") # removes the given element from the list once

lst.pop(0) # removes the element at given index from the list

22

Learning Goals

• Read and write code using 1D and 2D lists

• Use list methods to change lists without variable assignment

• Feedback: http://bit.ly/110-s21-feedback

23

http://bit.ly/110-s21-feedback

