
Strings
15-110 – Wednesday 02/24

Announcements

• Quiz1 today!
• Make sure to take the quiz by midnight EST

• No office hours on quiz days

2

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

• Use string operations and methods to solve problems

3

Unit 2 Overview

4

Unit 2: Data Structures and Efficiency

Data Structures: things we use while programming to organize multiple
pieces of data in different ways.

Efficiency: the study of how to design algorithms that run quickly, by
minimizing the number of actions taken.

These concepts are connected, as we often design data structures so
that specific tasks have efficient algorithms.

5

Unit 2 Topic Breakdown

Data Structures: strings, lists, dictionaries, trees, graphs

Efficiency: search algorithms, Big-O, tractability

6

Indexing and Slicing

7

Strings are Made of Characters

Unlike numbers and Booleans, strings can be broken down into individual
parts (characters). How can we access a specific character in a string?

First, we need to determine what each character's position is. Python assigns
integer positions in order, starting with 0.

S T E L L A

0 1 2 3 4 5
8

STELLA

Getting Characters By Location

If we know a character's position, Python will let us access that
character directly from the string. Use square brackets with the integer
position in between to get the character. This is called indexing.

s = "STELLA"

c = s[2] # "E"

We can get the number of characters in a string with the built-in
function len(s). This function will come in handy soon.

9

Common String Indexes

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?

s[len(s)] # runtime error

10

Activity: Guess the Index

Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

11

String Slicing Produces a Substring

We can also get a whole substring from a string by specifying a slice.

Slices are exactly like ranges – they can have a start, an end, and a step.
But slices are represented as numbers inside of square brackets,
separated by colons.

s = "abcde"
print(s[2:len(s):1]) # prints "cde"
print(s[0:len(s)-1:1]) # prints "abcd"
print(s[0:len(s):2]) # prints "ace"

12

String Slicing Shorthand

Like with range(), we don't always need to specify values for the start, end,
and step. These three parts have default values: 0 for start, len(s) for end,
and 1 for step. But the syntax to use default values looks a little different.

s[:] and s[::] are both the string itself, unchanged

s[1:] is the string without the first character (start is 1)

s[:len(s)-1] is the string without the last character (end is len(s)-1)

s[::3] is every third character of the string (step is 3)

13

Activity: Find the Slice

Given the string "abcdefghij", what slice would we need to get the
string "cfi"?

14

Looping with Strings

15

Looping Over Strings

Now that we have string indexes, we can loop over the characters in a
string by visiting each index in the string in order.

The string's first index is 0 and the last index is len(s) – 1. Use
range(len(s)).

s = "Hello World"

for i in range(len(s)):

print(i, s[i])

16

Algorithmic Thinking with Strings

If you need to solve a problem that involves doing something with every character
in a string, use a for loop over that string.

For example – how do we count the number of exclamation points in a string?

s = "Wow!! This is so! exciting!!!"

count = 0

for i in range(len(s)):
if s[i] == "!":

count = count + 1

print(count)

17

For Loop Indexes are Flexible

For loops may seem straightforward when the loop control variable refers to each
index in the string. But we can get more creative with what the variable is used for
when necessary!

For example – how would you check whether a string is a palindrome (the same
front-to-back as it is back-to-front)? Use the variable as the front index and the
back index offset.

def isPalindrome(s):

for i in range(len(s)):

if s[i] != s[len(s) - 1 - i]:
return False

return True

18

Other String Operators

19

Basic String Operations

There are useful string operations that are similar to operations we've
seen before. We've already seen concatenation:

"Hello " + "World" # "Hello World"

We can also use multiplication to repeat a string a number of times.

"Hello" * 3 # "HelloHelloHello"

20

The in Operator Searches a String

When we have a type that can be broken into parts (like a string), we
can use the in operator to check if a value occurs inside the whole.

"a" in "apple" # True

"4" in "12345" # True

"z" in "potato" # False

21

Compare Strings With ASCII Values

Python can also compare strings, like how it compares numbers. When it compares
two strings, it compares the ASCII values of each character in order.

Because the lowercase letters and uppercase letters are listed in order in the ASCII
table, we can compare lower-to-lower and upper-to-upper lexicographically, in the
order they'd appear in the dictionary. But that won't work if we compare lowercase
to uppercase letters.

"hello" > "goodbye" # True, 'h' larger than 'g'

"book" < "boot" # True, 'boo' equal and 'k' smaller than 't'

"APPLE" < "BANANA" # True, 'A' smaller than 'B'

"ZEBRA" > "aardvark" # False, lowercase letters are larger

22

ASCII Conversion Functions

We can directly translate characters to ASCII in Python. The built-in
function ord(c) returns the ASCII number of a character, and chr(x)
turns an integer into its ASCII character.

ord("k") # 107

chr(106) # "j"

You do: logically, what should chr(ord("a") + 1) produce?

23

String Methods

24

String Methods Are Called Differently

String built-in functions (and data structure functions in general) work differently from
built-in functions. Instead of writing:

isdigit(s)

write:

s.isdigit()

This tells Python to call the built-in string function isdigit() on the string s. It will
then return a result normally. We call this kind of function a method, because it
belongs to a data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas,
which is a data structure.

25

Don't Memorize- Use the API!

There is a whole library of built-in string methods that have already been
written; you can find them at

docs.python.org/3.8/library/stdtypes.html#string-methods

We're about to go over a whole lot of potentially useful methods, and it will
be hard to memorize all of them. Instead, use the Python documentation to
look for the name of a function that you know probably exists.

If you can remember which basic actions have already been written, you can
always look up the name and parameters when you need them.

26

https://docs.python.org/3.8/library/stdtypes.html#string-methods

Some String Methods Return Information

Some string methods return
information about the string.

s.isdigit(), s.islower(), and
s.isupper() return True if the string
is all-digits, all-lowercase, or all-
uppercase, respectively.

s.count(c) returns the number of
times the character c occurs in s.

s.find(c) returns the index of the
character c in s, or -1 if it doesn't occur
in s.

s = "hello"

s.isdigit() # False
s.islower() # True

"OK".isupper() # True

s.count("l") # 2

s.find("o") # 4

27

Example: Checking a String

As an example of how to use string methods, let's write a function that
returns whether or not a string holds a capitalized name. The first letter
of the name must be uppercase and the rest must be lowercase.

def formalName(s):

return s[0].isupper() and s[1:].islower()

28

Some String Methods Create New Strings

Other string methods return a new
string based on the original.

s.lower() and s.upper() return
a new string that is like the original,
but all-lowercase or all-uppercase,
respectively.

s.replace(a, b) returns a new
string where all instances of the
string a have been replaced with the
string b.

s = "Hello"

a = s.lower() # a = "hello"
b = s.upper() # b = "HELLO"

c = s.replace("l", "y")
c = "Heyyo"

29

Example: Making New Strings

We can use these new methods to make a silly password-generating
function.

def makePassword(phrase):

phrase2 = phrase.lower()

phrase3 = phrase2.replace("a", "@").replace("o", "0")

return phrase3

30

Activity: getFirstName(fullName)

You do: write the function getFirstName(fullName), which takes a
string holding a two-word full name (in the format "Farnam
Jahanian") and returns just the first name. You can assume the first
name will either be one word or will be hyphenated (like "Soo-Hyun
Kim").

You'll want to use a method and an operation in order to isolate the first
name from the rest of the string.

31

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

• Use string operations and methods to solve problems

• Feedback: http://bit.ly/110-s21-feedback

32

http://bit.ly/110-s21-feedback

