
Unit 1 Review
15-110 – Monday 02/22

Announcements

• Check2 was due today

• Week1-2 revision deadline is tomorrow at noon EST

• Quiz1 on Wednesday
• Make sure you practice using LockDown Browser before then!

2

Agenda

• Unit Overview

• Half-Adders / Full-Adders / N-bit Adders

• Function Call Stack

• For loops

• While loops

3

Unit 1 Overview

4

Unit 1 Goals

Our first unit had two major themes: developing key programming
skills and understanding the basics of computer organization.

How do the topics we discussed fit into these themes?

5

Programming Skills

We started with programming basics. A program is an implementation
of an algorithm. Data and variables are the core part of any program.
Variables also have scope based on where they are defined.

While programming, we'll sometimes run into errors. We learned the
basic error types, discovered what causes them, and discussed
debugging.

6

Programming Skills (continued)

We use control structures to change how we move through the steps of a
program. Nesting control structures lets us create more complex algorithms.

Conditionals let us choose whether or not to run a series of steps.

Loops (either while loops or for loops) let us repeat actions, as long as we
define the loop control variable.

Functions let us define an algorithm under a name and call that function
later on. A function has argument(s), a returned value, and side effect(s).

7

Computer Organization

We also discussed the basics of how computers organize data. This is
done partially through the process of abstraction to change levels of
detail in systems.

We discussed how the computer tokenizes, parses, and translates
Python into a language the computer understands.

We also discussed how the call stack helps the computer keep track of
information.

8

Computer Organization (continued)

We explored how computers represent data in binary and implement
algorithms using circuits. We explored how circuits can also be
represented as Boolean expressions and truth tables.

We discussed how these concepts can be abstracted by implementing
addition via circuits and implementing text and colors via binary.

9

Upcoming Topics

In the next unit, we'll dive deeper into programming by focusing on
algorithm design. We'll discuss data structures (new ways to organize
data) and efficiency (how to determine how 'fast' our algorithms are).

We'll get back to computer organization in Unit 3, where we'll discuss
how computers scale up to work on much larger inputs.

10

Addition in Circuits

11

Addition Using Circuits

Let's consider this problem a new way by starting from the goal and working
backwards. How can we teach a computer to add two numbers?

(Why do we care about this? Computers can only take actions that are built
into their hardware. We need to implement the core algorithmic actions –
including addition! – if we want to build programs that do interesting things.)

We can't just provide the computer numbers like 127 and 86- we have to
translate them to binary first. That way, the computer can store them as
high/low levels of electricity.

12

Adding Large Numbers

How do you as a human approach the task of adding two really large
numbers? You break it up into parts and solve each part independently.

1 2 7

+ 8 6

An n-bit adder will work the same way, by adding one column of
numbers at a time. But it will add binary digits, not decimal digits.

13

Adding a column of digits

Now we just need to teach the computer how to add a column of digits.

There are only three inputs (two digits and a carried digit), so treat this like learning the
multiplication table. Memorize all the possible inputs and their outputs.

0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
14

Finding the Algorithm

Once you've made a truth table, you can look for patterns in the truth
table to derive an algorithm. That algorithm can then be made into a
circuit.

15

Cin X Y Cin + X + Y Cout Sum

1 1 1 11 1 1

1 1 0 10 1 0

1 0 1 10 1 0

1 0 0 01 0 1

0 1 1 10 1 0

0 1 0 01 0 1

0 0 1 01 0 1

0 0 0 00 0 0

Cout is 1 when at least two of Cin, X, and
Y are 1. Combine pairs with and, then
combine all three possibilities with or.

Sum is 1 if an odd number of Cin, X, and
Y are 1. Use xor on all three to get the
same result.

Put it all together

Once we have a circuit that can add a whole column of digits (a full
adder), just chain it together with other full adders to add as many
digits as you need.

We 'carry' digits by passing the Cout result from one column to the Cin

input of the next.

16

Function Call Stack

17

Control Structures and Execution

When Python runs a program, it runs through the statements sequentially
until a control structure comes along. Control structures change how
functions decide which line of code to run next. We call this control flow.

A function definition is a control structure, because when the code reaches
a definition, it doesn't execute the code in the definition normally. Instead, it
loads the definition into memory, to be revisited if needed.

When Python reaches a function call, it redirects the control flow by
jumping to the associated definition. The code will run through the definition
until it hits a return statement, then go back to where it was originally called.
It's like clicking on a URL on a website to look something up, then clicking the
'Back' button to go back to where you were before.

18

The Call Stack manages memory

How does Python know where to go back when it's done with a
function? It uses the call stack, both to keep track of where it needs to
go and to keep track of the local state at each point in the program.

Understanding the function call stack helps us with code reading. Being
able to read and trace code is an important skill in programming.

Let's do an example together of tracing a function call stack.

19

Example code

def a(x, y):

z = x + y

if b(z):

x = x + 1

return x - y

def b(y):

y = y * 10

return y == 110

x = 6

result = a(x, 5)

print("Result:", result)

20

For Loops

21

For Loops

A loop is a control structure that lets you repeat a number of
statements (the body of the loop) a certain number of times.

A for loop implements this looping by setting the loop control variable
to a pre-determined set of numbers. The numbers are generated by
the range expression.

We usually use for loops when we know exactly how many times we
need to loop.

22

Example: Code Reading

Consider the following code snippet:

count = 0
for x in range(1, 101):

if isPrime(x):
print(x)
count = count + 1

print("Total:", count)

If we assume that isPrime has been written and works correctly, what does
this do?

23

Example: Code Writing

Now let's write code with a for loop. Let's write the isPrime function
from before. It should take an integer and return True if the int is
prime, and False otherwise.

24

While Loops

25

While Loops

A while loop implements a loop, just like a for loop. However, while
loops work a little differently. Instead of pre-deciding what to loop over,
while loops keep running the code in the body while the condition is
True.

This means while loops take a little longer to write, since you have to
set up and update the loop control variable yourself. But it also means
we can write programs where we don't know how many times we need
to loop.

26

Example: Code Reading

What does the following function do?

def mystery(num):

x = num + 1

while not isPrime(x):

x = x + 1

return x

27

Example: Code Writing

Could we write isPrime using a while loop instead of a for loop?

Sure! Anything that a for loop using a range can do, a while loop can
do too.

28

Agenda

• Unit Overview

• Half-Adders / Full-Adders / N-bit Adders

• Function Call Stack

• For loops

• While loops

• Feedback: http://bit.ly/110-s21-feedback

29

http://bit.ly/110-s21-feedback

