While Loops

15-110 — Wednesday 02/17

 Hw1 feedback released
* How to view programming feedback

e Checkl/Hw1 revision deadline: Tuesday 2/23 noon
* If you want to update your submission based on feedback, just make the changes to you
solution and resubmit
* TAs will regrade within four days, usually
* Note that revision submissions are capped at 90 points — don't resubmit if you already
scored a 90 or above

* |f you've been impacted by the recent winter storms and will need to submit
exercises/assignments late, contact Prof. Kelly to arrange extensions

 Quizl review materials released

* Find topics list & other practice problems here:
https://www.cs.cmu.edu/~110/assessments.html

* Install & practice using LockDown Browser on Gradescope here:
https://www.gradescope.com/courses/225872/assignments/1018473/

* Note that on the actual quiz, you will not be able to see your answers
immediately

* Gradescope will sometimes mark correct answers as incorrect if they don't
perfectly match the answer key- we'll fix those on the real quizzes

https://www.cs.cmu.edu/~110/assessments.html
https://www.gradescope.com/courses/225872/assignments/1018473/

Nice job making your fences creative! Our favorites include:

=l
O

e Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update actions for
loop control variables

* Translate algorithms from control flow charts to Python code

* Use nesting of statements to create complex control flow

Repeating Actions Is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

A loop is a control structure that lets us repeat actions so that we don't need
to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the action
of printing. The part that is different is the number that is printed.

While Loops

A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <booleanExpression>:
<loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True,
it runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips
the loop body the same way an 1f statement would skip its body.

Unlike 1t statements, the condition in a while loop must eventually become
False. If this doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a
variable as part of the Boolean expression. We can then change the variable inside
the while loop. For example, the variable 1 changes in the loop below.

i=1

while i < 5:
print(i)
i=1+1

print("done")

10

What happens if we don't ensure that the condition eventually becomes False?
The while loop will just keep looping forever! This is called an infinite loop.

i=1

while i > @:
print(1i)
i=1+1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt
above the interpreter to make the program stop. Then investigate your program to
figure out why the variable never makes the condition False. Printing out the

variable that changes can help pinpoint the issue.

while Loop Flow Chart

Unlike an 1f statement, awhile
loop flow chart needs to include a
transition from the while loop's
body back to itself.

- False

|
i=1 | v
. . |
while 1 < 5: | print("done")
. . |
r.)r‘ln’.c(l) ol
1 =1 + 1 |

print("done") loop body

12

You Do: Trace the Program

You do: if we slightly change the code from the previous program, what
happens to the program?

i =20

while 1 < 5:
i1 =1+ 1 # moved up one line
print(i)

print("done")

13

Loop Control Variables

Now that we know the basics of how loops work, we need to write
while loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part is the loop control
variable(s), which is updated in the loop body.

To use this variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated

for the loop to work correctly.

In our print 1-to-10 example, we want to start the variable at 1, and
continue while the variable is less than or equal to 10. Set num = 1 at the
beginning of the loop and continue looping while num <= 10. The loop
ends when numis 11.

Each printed number is one larger from the previous, so the update should
set the variable to the next number (num = num + 1) in each iteration.

num = 1
while num <= 10:
print(num)

num = num + 1

16

How would we change the program if we wanted to count backwards instead? The
loop control variable is the same, but its components change.

Set num = 10 at the beginning of the loop and continue loopingwhile num >=
1. The loop ends when num is O.

Each printed number is one smaller from the previous, so the update should set
the variable to the next number (num = num - 1) in each iteration.

hum = 10
while num >= 1:
print(num)

num = num - 1

17

You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

Loops in Algorithms

Suppose we want to add the numbers
from 1 to 10.

We need to keep track of two different
numbers:

* the current number we're adding
* the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0
num = 1
while num <= 10:
result = result + num
num = num + 1
print(result)

Which is the loop control variable?

20

Tracing Loops

Sometimes it gets difficult to
understand what a program is doing
when that program uses loops. It can be
helpful to manually trace through the
values in the variables at each step of
the code, including each iteration of the
loop.

result = 0
Qum=1

while num <= 190:
result = result + num
num = num + 1

prinf(result)

==

~ pre-loop
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7
iteration 8
iteration 9
iteration 10

» post-loop

0
1
3
6
10
15
21
28
36
45

55
55

O 00 N o o B W N =

= S
m R O

21

Update Order

When updating multiple variables in a
loop, order matters. If we update num
before we update result, it changes
the value held in result.

result = 0
Qum=1

while num <= 10:
num = num + 1
result = result + num

print(result)

Note: Python checks the condition only
at the start of the loop; it doesn't exit
the loop as soon as num becomes 11.

pre-loop

iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7
iteration 8

iteration 9

iteration 10

post-loop

o U1 N O

65
65

O 00 N o o B W N =

= S
m R O

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes
you need to think through an example to make
it clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human,
turning them into a zombie. If we start with just
one zombie, how long does it take for the whole
world (7.5 billion people) to turn into zombies?

We'll need to track and update two variables-
one for the number of zombies, one for the
number of days passed.

Loop control variable: # of zombies
Start value: 1 zombie

Continuing condition: while the number of
zombies is less than the population

Update action: double the number of zombies
every day

zombieCount = 1

population = 7.5 * 10**9

daysPassed = ©

while zombieCount < population:
daysPassed = daysPassed + 1
zombieCount = zombieCount * 2

print(daysPassed)

23

Example: how would you count the number
of digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1
or
a*10% + b*10?! + c*10°

Check each power of 10 until one is bigger
than the number. A separate variable can
track the actual number of digits counted.

Loop control variable: which power of 10 is being
checked

Start value: 1 (10°)

Continuing condition: while the power of 10 isn't
greater than the number

Update action: multiply the power by 10

num = 2020
power =1
digits = ©

while power < num:
digits = digits + 1
power = power * 10

print(digits)

24

Another answer: instead of comparing a
power of 10 to the number, change the
number itself.

For example, to count the digits in abc,
change:

abc ->
ab ->
a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet 0 (no digits)

Update action: divide the number by 10

num = 2020
digits = ©
while num > ©:
digits = digits + 1
num = num // 10
print(digits)

25

A Parsons Puzzle is a type of problem where you're given all the lines of a program and need to
arrange them into the correct order (including correct indentation levels).

In the following puzzle, you will order lines to create the function compoundInterest(base,
rate, numYears), which calculates the amount that a base sum will have increased based
on an annual interest rate and the number of years that have passed.

To compute the new base sum after numYears, add the current amount of money times the
interest rate to the base sum every year.

Try out the Parsons Puzzle here with your breakout group: https://bit.ly/110-compound

Note that you will not need to use every line on the left to solve the puzzle.

26

https://bit.ly/110-compound

We showed previously how we can nest conditionals in row = 0
other conditionals to combine them together. We can do

the same thing with while loops! while row < 5:

if row % 2 ==

For example, let's make ascii art. Write code to produce print ("x-x-x"

the following printed string:

else:
X=-X-X print("-o0-0-")
-0-0- row = row + 1
X-X-X
_O_O_
X-X-X

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

27

Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

Identlgfly start values, continuing conditions, and update actions for loop control
variables

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

