
Circuits and Gates
15-110 – Monday 02/15



Announcements

• Hw1 was due at noon today
• Will go over viewing programming feedback Wednesday

• First quiz will happen next week on Wednesday 2/24
• Quizzes are open-note; slides will be linked in quiz, written notes are fine too
• Quizzes are solo. Do not collaborate!
• Can take at any time from 12am EST – 11:59pm EST
• No office hours; Piazza locked down during quiz but available for clarification

• Piazza only monitored from 6am-11:59pm EST – we recommend not taking the exam before 
then!

• 20min expectation with a 40min window
• On Gradescope, with LockDown Browser

• Quiz1 covers week1-2 material, Hw1
• Study tools will be released on Wednesday (topics list, practice quiz, etc)
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Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms 
and abstraction
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Computers Run on Hardware

Software: the abstracted concepts of 
computation- how computers represent 
data, and how programs can manipulate 
data.

Hardware: the actual physical 
components used to implement 
software, like the laptop components 
shown to the right.

All the operations we perform on a 
computer correspond to physical 
actions within the hardware of the 
machine. How does this work?
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Bits are Electric Voltage

We previously discussed how 
everything in a computer is 
represented using bits (0s and 1s).

In hardware, bits are represented as 
electrical voltage. A high level of 
voltage is considered a 1; a low level 
of voltage is considered a 0.

By redirecting electrical flow 
throughout a system, we can change 
the values of data in hardware.
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Circuits Manipulate Voltage

The computer uses circuits to perform 
computational actions. Circuits redirect 
electricity to different parts of hardware.

Physical components of circuits (like 
transistors and capacitors) are out of the 
scope of this class. If you're interested, 
take an Intro to Electrical Engineering 
class!

Instead, we will discuss how to use 
gates, which are abstracted circuit 
components. Every gate we discuss can 
be directly translated to a real hardware 
circuit.
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Logical Gates
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Gates are Hardware's Boolean Operations

Recall that Booleans have two values (True and False), just like bits 
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation, 
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.
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Basic Gates – Actual Hardware

Our three basic gates can be represented in actual hardware

An and gate takes two inputs and 
outputs 1 only if both inputs were 1

An or gate takes two inputs and 
outputs 1 if either input was 1

A not gate takes one input and 
outputs the reverse (1 becomes 0, 0 
becomes 1)
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Basic Gates – Shorthand

We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and 
outputs 1 if both inputs were 1

An or gate takes two inputs and 
outputs 1 if either input was 1

A not gate takes one input and 
outputs the reverse (1 becomes 0, 0 
becomes 1)

A
B

A ∧ B

A
B

A ∨ B

A ¬ A

A B A ∧ B

1 1 1

1 0 0

0 1 0

0 0 0

A B A ∨ B

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1
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Circuit Simulation

When working with gates, it can 
help to simulate a circuit using the 
gates to investigate how they 
work.

There are lots of free online circuit 
simulators. We'll use this one: 
https://logic.ly/demo
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Algorithms with Gates
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Multiple Representations of Gate Algorithms

Just like with Boolean expressions, we can combine gates together in 
different orders to achieve different results. This lets us build 
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use 
one of three different representation formats: a Boolean expression, a 
circuit, or a truth table.
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Truth Tables Show All Possibilities

So far, we've used truth tables to show all 
the outcomes of a single gate or operation.

We can also use these tables to show all the 
possible inputs and outputs of expressions.

For example, the truth table to the right 
shows all possibilities for the following 
expression:

X ∨ ¬Y

As a Boolean expression, this would be:

X or (not Y)

X Y ¬Y X ∨ ¬Y

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1
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Three Representations

Boolean Expressions, Circuits, and Truth Tables can all be used to 
represent the same algorithm. Why do we use all three?

• Boolean Expressions are good for quickly representing an algorithm in 
text

• Circuits are a more visual option, and more interactive

• Truth Tables lay out all inputs and outputs, which helps derive 
algorithms
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Truth Table Clarify Complex Expressions

Truth tables are especially useful when you need to determine the output of a 
fairly complex expression, like the rightmost column here. You can break down the 
expression into smaller parts and give each part its own column.

A B C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) 

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A B C A ∧ B ∧ C A ∧ ¬B ∧ ¬C ¬A ∧ B ∧ ¬C ¬A ∧ ¬B ∧ C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) 

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0
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Deriving Algorithms from Truth Tables

If we know a set of inputs and outputs as a truth table, we can derive an equation 
to represent the inputs and outputs by looking for patterns that match the gates 
we know how to build.

For example, let's derive an algorithm to produce the truth table shown below.

A B C Output

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0 17



Deriving Algorithms from Truth Tables
First, note that the Output is only 1 when B is 1. That means that B is required, so the 
algorithm can use B ∧ ??? [B and ???] as a first step, to account for 4/5 of the 0s

What should the ??? value be? Note that the only time B is 1 and the Output is 0 is 
when A and C are both 0. This corresponds to A ∨ C [A or C].

Our final equation is B ∧ (A ∨ C) [B and (A or C)].

A B C A ∨ C B ∧ (A ∨ C) Output

1 1 1 1 1 1

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0 18

We won't ask you 
to do this on 
assignments, but 
it's a handy thing 
to know about



Truth Table to Boolean Expression to Circuit

Once we've used a truth table to 
figure out a logical expression, we 
can use it to create a corresponding 
circuit.

Just combine the appropriate gates 
in the order specified by the 
parentheses.

The circuit to the right has the exact 
same behavior as the truth table we 
made before, as it combines an Or 
gate and an And gate in the same 
order.

B ∧ (A ∨ C)
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Circuit to Boolean Expression to Truth Table

Likewise, given a circuit, we can construct its 
truth table.

Given the circuit shown below, we can construct 
a truth table either by logically determining the 
result, or by simulating all possible input 
combinations.

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0
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Activity: Find the positive inputs!

Convert the following circuit to 
the equivalent Boolean 
Expression, then write the 
equivalent truth table.

Which input combinations will 
result in the circuit outputting 1 
(the light bulb lighting up)?

and or not
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A Few More Gates

Let's add a few more gates to simplify our circuits.

A nand gate is ¬ (A ∧ B)

A nor gate is ¬ (A ∨ B)

An xor gate is 1 if exactly one of A 
and B are 1 (and the other is 0). It is 
the same as (A ∧ ¬B) ∨ (¬A ∧ B).

A
B

¬ (A ∧ B)

A
B

¬ (A ∨ B)

A ⊕ B

A B ¬ (A ∧ B)

1 1 0

1 0 1

0 1 1

0 0 1

A B ¬ (A ∨ B)

1 1 0

1 0 0

0 1 0

0 0 1

A B A ⊕ B

1 1 0

1 0 1

0 1 1

0 0 0

A
B
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Abstraction with Gates
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Writing Real Algorithms with Circuits

Now that we know the basics of interacting with gates and circuits, we 
can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:          
integer addition.
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Addition with Gates

Let's say that we want to build a 
circuit that takes two numbers 
(represented in binary), adds them 
together, and outputs the result. 
How do we do this?

First, simplify. Let's solve a 
subproblem. How do we add two 
one-bit numbers, X and Y? What are 
all the possible inputs and outputs?

Note that 1 + 1 = 10 because we're 
working in binary

X Y X + Y

1 1 10

1 0 01

0 1 01

0 0 00
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Addition with Gates – Half-Adder

Because we need two digits to hold 
the result, we need two result 
values: Sum (the 1s digit) and Carry 
(the 2s digit).

How can we compute Sum and Carry 
logically? Examine the truth table: 
Sum is just an Xor function, and 
Carry is just an And function! 

We can make a circuit to do one-bit 
addition, as is shown on the right. 
This is called a Half-Adder.

X Y X + Y Carry Sum X ∧ Y X ⊕ Y

1 1 10 1 0 1 0

1 0 01 0 1 0 1

0 1 01 0 1 0 1

0 0 00 0 0 0 0
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Addition with Gates Over Multiple Digits

Now expand the circuit to handle 
numbers with multiple bits (e.g. 4-bit 
numbers). What needs to change?

When adding two numbers, we might 
need to carry an output over to the next 
column of the addition. 

For the two's column on the right, call 
the carried-in bit Cin and next carry Cout.

We need to modify our half-adder to 
have a third input Cin and update the 
computations for Carry (Cout) and Sum.

<- carried bits

1 0 0 1 +

0 0 1 1 =
-------

Cout Cin

1

0 0

1

11
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Addition with Gates – Full Adder

To calculate Cout, note that it is equivalent to X ∨ Y [X or Y] when Cin is 1, and 
equivalent to X ∧ Y [X and Y] when Cin is 0.

Sum is now the result of Xor-ing Cin and (X ⊕ Y).

Cin X Y Cin + X + Y Cout Sum ((X ∨ Y) ∧ Cin) ∨ (X ∧ Y) (X ⊕ Y) ⊕ Cin

1 1 1 11 1 1 1 1

1 1 0 10 1 0 1 0

1 0 1 10 1 0 1 0

1 0 0 01 0 1 0 1

0 1 1 10 1 0 1 0

0 1 0 01 0 1 0 1

0 0 1 01 0 1 0 1

0 0 0 00 0 0 0 0
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Addition with Gates – N-bit Adder

Finally, to add two four-bit 
numbers together, we can just 
chain together the Full Adder 
we've created four times.

Instead of inputting Cin, we pass in 
the Cout from the prior 
computation (and pass in 0 for 
the 1s digit). This process repeats 
the concept of the Full Adder 
multiple times in order to make a 
more complex circuit.

The result is really confusing to 
look at...

29



Addition with Gates – N-bit Adder

To make this easier to understand, 
use abstraction to replace each Full 
Adder with a box. That box holds 
the Full Adder circuit within it, but it 
doesn't need to bother with all the 
internal components.

Now we can do proper addition!

Let's try it out. What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011

• Walk through the full adders...

• The output is 1100=8+4

• That's 12! It works!
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Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've 
designed to build an actual hardware 
circuit that does 4-bit addition (or 
more!).

See a demo of what that looks like 
here: 
https://youtu.be/wvJc9CZcvBc?t=742
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Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms 
and abstraction

• Feedback: http://bit.ly/110-s21-feedback
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