
Circuits and Gates
15-110 – Monday 02/15

Announcements

• Hw1 was due at noon today
• Will go over viewing programming feedback Wednesday

• First quiz will happen next week on Wednesday 2/24
• Quizzes are open-note; slides will be linked in quiz, written notes are fine too
• Quizzes are solo. Do not collaborate!
• Can take at any time from 12am EST – 11:59pm EST
• No office hours; Piazza locked down during quiz but available for clarification

• Piazza only monitored from 6am-11:59pm EST – we recommend not taking the exam before
then!

• 20min expectation with a 40min window
• On Gradescope, with LockDown Browser

• Quiz1 covers week1-2 material, Hw1
• Study tools will be released on Wednesday (topics list, practice quiz, etc)

2

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

3

Computers Run on Hardware

Software: the abstracted concepts of
computation- how computers represent
data, and how programs can manipulate
data.

Hardware: the actual physical
components used to implement
software, like the laptop components
shown to the right.

All the operations we perform on a
computer correspond to physical
actions within the hardware of the
machine. How does this work?

4

Bits are Electric Voltage

We previously discussed how
everything in a computer is
represented using bits (0s and 1s).

In hardware, bits are represented as
electrical voltage. A high level of
voltage is considered a 1; a low level
of voltage is considered a 0.

By redirecting electrical flow
throughout a system, we can change
the values of data in hardware.

5

Circuits Manipulate Voltage

The computer uses circuits to perform
computational actions. Circuits redirect
electricity to different parts of hardware.

Physical components of circuits (like
transistors and capacitors) are out of the
scope of this class. If you're interested,
take an Intro to Electrical Engineering
class!

Instead, we will discuss how to use
gates, which are abstracted circuit
components. Every gate we discuss can
be directly translated to a real hardware
circuit.

6

Logical Gates

7

Gates are Hardware's Boolean Operations

Recall that Booleans have two values (True and False), just like bits
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation,
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.

8

Basic Gates – Actual Hardware

Our three basic gates can be represented in actual hardware

An and gate takes two inputs and
outputs 1 only if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, 0
becomes 1)

9

Basic Gates – Shorthand

We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and
outputs 1 if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, 0
becomes 1)

A
B

A ∧ B

A
B

A ∨ B

A ¬ A

A B A ∧ B

1 1 1

1 0 0

0 1 0

0 0 0

A B A ∨ B

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1

10

Circuit Simulation

When working with gates, it can
help to simulate a circuit using the
gates to investigate how they
work.

There are lots of free online circuit
simulators. We'll use this one:
https://logic.ly/demo

11

https://logic.ly/demo

Algorithms with Gates

12

Multiple Representations of Gate Algorithms

Just like with Boolean expressions, we can combine gates together in
different orders to achieve different results. This lets us build
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use
one of three different representation formats: a Boolean expression, a
circuit, or a truth table.

13

Truth Tables Show All Possibilities

So far, we've used truth tables to show all
the outcomes of a single gate or operation.

We can also use these tables to show all the
possible inputs and outputs of expressions.

For example, the truth table to the right
shows all possibilities for the following
expression:

X ∨ ¬Y

As a Boolean expression, this would be:

X or (not Y)

X Y ¬Y X ∨ ¬Y

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1

14

Three Representations

Boolean Expressions, Circuits, and Truth Tables can all be used to
represent the same algorithm. Why do we use all three?

• Boolean Expressions are good for quickly representing an algorithm in
text

• Circuits are a more visual option, and more interactive

• Truth Tables lay out all inputs and outputs, which helps derive
algorithms

15

Truth Table Clarify Complex Expressions

Truth tables are especially useful when you need to determine the output of a
fairly complex expression, like the rightmost column here. You can break down the
expression into smaller parts and give each part its own column.

A B C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A B C A ∧ B ∧ C A ∧ ¬B ∧ ¬C ¬A ∧ B ∧ ¬C ¬A ∧ ¬B ∧ C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0

16

Deriving Algorithms from Truth Tables

If we know a set of inputs and outputs as a truth table, we can derive an equation
to represent the inputs and outputs by looking for patterns that match the gates
we know how to build.

For example, let's derive an algorithm to produce the truth table shown below.

A B C Output

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0 17

Deriving Algorithms from Truth Tables
First, note that the Output is only 1 when B is 1. That means that B is required, so the
algorithm can use B ∧ ??? [B and ???] as a first step, to account for 4/5 of the 0s

What should the ??? value be? Note that the only time B is 1 and the Output is 0 is
when A and C are both 0. This corresponds to A ∨ C [A or C].

Our final equation is B ∧ (A ∨ C) [B and (A or C)].

A B C A ∨ C B ∧ (A ∨ C) Output

1 1 1 1 1 1

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0 18

We won't ask you
to do this on
assignments, but
it's a handy thing
to know about

Truth Table to Boolean Expression to Circuit

Once we've used a truth table to
figure out a logical expression, we
can use it to create a corresponding
circuit.

Just combine the appropriate gates
in the order specified by the
parentheses.

The circuit to the right has the exact
same behavior as the truth table we
made before, as it combines an Or
gate and an And gate in the same
order.

B ∧ (A ∨ C)

19

Circuit to Boolean Expression to Truth Table

Likewise, given a circuit, we can construct its
truth table.

Given the circuit shown below, we can construct
a truth table either by logically determining the
result, or by simulating all possible input
combinations.

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

20

Activity: Find the positive inputs!

Convert the following circuit to
the equivalent Boolean
Expression, then write the
equivalent truth table.

Which input combinations will
result in the circuit outputting 1
(the light bulb lighting up)?

and or not

21

A Few More Gates

Let's add a few more gates to simplify our circuits.

A nand gate is ¬ (A ∧ B)

A nor gate is ¬ (A ∨ B)

An xor gate is 1 if exactly one of A
and B are 1 (and the other is 0). It is
the same as (A ∧ ¬B) ∨ (¬A ∧ B).

A
B

¬ (A ∧ B)

A
B

¬ (A ∨ B)

A ⊕ B

A B ¬ (A ∧ B)

1 1 0

1 0 1

0 1 1

0 0 1

A B ¬ (A ∨ B)

1 1 0

1 0 0

0 1 0

0 0 1

A B A ⊕ B

1 1 0

1 0 1

0 1 1

0 0 0

A
B

22

Abstraction with Gates

23

Writing Real Algorithms with Circuits

Now that we know the basics of interacting with gates and circuits, we
can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:
integer addition.

24

Addition with Gates

Let's say that we want to build a
circuit that takes two numbers
(represented in binary), adds them
together, and outputs the result.
How do we do this?

First, simplify. Let's solve a
subproblem. How do we add two
one-bit numbers, X and Y? What are
all the possible inputs and outputs?

Note that 1 + 1 = 10 because we're
working in binary

X Y X + Y

1 1 10

1 0 01

0 1 01

0 0 00

25

Addition with Gates – Half-Adder

Because we need two digits to hold
the result, we need two result
values: Sum (the 1s digit) and Carry
(the 2s digit).

How can we compute Sum and Carry
logically? Examine the truth table:
Sum is just an Xor function, and
Carry is just an And function!

We can make a circuit to do one-bit
addition, as is shown on the right.
This is called a Half-Adder.

X Y X + Y Carry Sum X ∧ Y X ⊕ Y

1 1 10 1 0 1 0

1 0 01 0 1 0 1

0 1 01 0 1 0 1

0 0 00 0 0 0 0

26

Addition with Gates Over Multiple Digits

Now expand the circuit to handle
numbers with multiple bits (e.g. 4-bit
numbers). What needs to change?

When adding two numbers, we might
need to carry an output over to the next
column of the addition.

For the two's column on the right, call
the carried-in bit Cin and next carry Cout.

We need to modify our half-adder to
have a third input Cin and update the
computations for Carry (Cout) and Sum.

<- carried bits

1 0 0 1 +

0 0 1 1 =

Cout Cin

1

0 0

1

11

27

Addition with Gates – Full Adder

To calculate Cout, note that it is equivalent to X ∨ Y [X or Y] when Cin is 1, and
equivalent to X ∧ Y [X and Y] when Cin is 0.

Sum is now the result of Xor-ing Cin and (X ⊕ Y).

Cin X Y Cin + X + Y Cout Sum ((X ∨ Y) ∧ Cin) ∨ (X ∧ Y) (X ⊕ Y) ⊕ Cin

1 1 1 11 1 1 1 1

1 1 0 10 1 0 1 0

1 0 1 10 1 0 1 0

1 0 0 01 0 1 0 1

0 1 1 10 1 0 1 0

0 1 0 01 0 1 0 1

0 0 1 01 0 1 0 1

0 0 0 00 0 0 0 0

28

Addition with Gates – N-bit Adder

Finally, to add two four-bit
numbers together, we can just
chain together the Full Adder
we've created four times.

Instead of inputting Cin, we pass in
the Cout from the prior
computation (and pass in 0 for
the 1s digit). This process repeats
the concept of the Full Adder
multiple times in order to make a
more complex circuit.

The result is really confusing to
look at...

29

Addition with Gates – N-bit Adder

To make this easier to understand,
use abstraction to replace each Full
Adder with a box. That box holds
the Full Adder circuit within it, but it
doesn't need to bother with all the
internal components.

Now we can do proper addition!

Let's try it out. What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011

• Walk through the full adders...

• The output is 1100=8+4

• That's 12! It works!
30

Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've
designed to build an actual hardware
circuit that does 4-bit addition (or
more!).

See a demo of what that looks like
here:
https://youtu.be/wvJc9CZcvBc?t=742

31

https://youtu.be/wvJc9CZcvBc?t=742

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

• Feedback: http://bit.ly/110-s21-feedback

32

http://bit.ly/110-s21-feedback

