Circuits and Gates

15-110 — Monday 02/15

* Hw1 was due at noon today
* Will go over viewing programming feedback Wednesday

* First quiz will happen next week on Wednesday 2/24
* Quizzes are open-note; slides will be linked in quiz, written notes are fine too
* Quizzes are solo. Do not collaborate!
e Can take at any time from 12am EST — 11:59pm EST

* No office hours; Piazza locked down during quiz but available for clarification

. Prl]azzla only monitored from 6am-11:59pm EST — we recommend not taking the exam before
then

e 20min expectation with a 40min window
* On Gradescope, with LockDown Browser

* Quizl covers week1-2 material, Hw1l
» Study tools will be released on Wednesday (topics list, practice quiz, etc)

* Translate Boolean expressions to truth tables and circuits

* Translate circuits to truth tables and Boolean expressions

* Recognize how addition is done at the circuit level using algorithms
and abstraction

Computers Run on Hardware

Software: the abstracted concepts of

computation- how computers represent

gata, and how programs can manipulate
ata.

Hardware: the actual physical
components used to implement
software, like the laptop components
shown to the right.

All the operations we perform on a
computer correspond to physical
actions within the hardware of the
machine. How does this work?

We previously discussed how
everything in a computer is
represented using bits (Os and 1s).

In hardware, bits are represented as
electrical voltage. A high level of
voltage is considered a 1; a low level
of voltage is considered a 0.

Voltage

By redirecting electrical flow
throughout a system, we can change
the values of data in hardware.

5V

oV

Time

Circuits Manipulate Voltage

The computer uses circuits to perform
computational actions. Circuits redirect
electricity to different parts of hardware.

Physical components of circuits (like
transistors and capacitors) are out of the
scope of this class. If you're interested,
t?ke ?n Intro to Electrical Engineering
class!

Instead, we will discuss how to use J O CuTPUT
gates, which are abstracted circuit Tiav
components. Every gate we discuss can T % 100
be directly translated to a real hardware []
circuit. 2k TH‘.’:."&
& O3 G

Logical Gates

Recall that Booleans have two values (True and False), just like bits
(1/high voltage and 0O/low voltage).

We can build a gate to have the same effect as a Boolean operation,
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.

Our three basic gates can be represented in actual hardware

An and gate takes two inputs and Vce Ve Vee
outputs 1 only if both inputs were 1
a_—| 4{

——F
An or gate takes two inputs and ﬂ—{ a 4{
outputs 1 if either input was 1 h — b E
HMEE NMOS NMOS
A not gate takes one input and AND gate OR gate NOT gate

outputs the reverse (1 becomes 0, O
becomes 1)

We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and
outputs 1 if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, O
becomes 1)

A
B AAB

A -A

1)
) ST
>~

o O k=

o O - -

o = O B

o »r O B

o O O B

[T = S S SN

When working with gates, it can
help to simulate a circuit using the
gates to investigate how they
work.

There are lots of free online circuit
simulators. We'll use this one:
https://logic.ly/demo

- logic.lv File Edit View Tools Simulate

adEe|>c||h+| |

ri-State
3 B
SR Flip-Flop &
D Flip-Flop
L__j .Ei Or Gate|
JK Flip-Flop Rl EaHon T P
[==] ()
Label ":E}_
Bkl
Pull Up Pull Down

11

https://logic.ly/demo

Algorithms with Gates

Just like with Boolean expressions, we can combine gates together in
different orders to achieve different results. This lets us build
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use

one of three different representation formats: a Boolean expression, a
circuit, or a truth table.

Truth Tables Show All Possibilities

So far, we've used truth tables to show all
the outcomes of a single gate or operation.

We can also use these tables to show all the
possible inputs and outputs of expressions. -_

Y
1 1 0 1
For example, the truth table to the right 1 0 1 1
shows all possibilities for the following 0 1 0 0
expression:
X V =Y 0 0 1 1

As a Boolean expression, this would be:
X or (not Y)

14

Boolean Expressions, Circuits, and Truth Tables can all be used to
represent the same algorithm. Why do we use all three?

* Boolean Expressions are good for quickly representing an algorithm in
text

* Circuits are a more visual option, and more interactive

* Truth Tables lay out all inputs and outputs, which helps derive
algorithms

Truth Table Clarity Complex Expressions

Truth tables are especially useful when you need to determine the output of a
fairly complex expression, like the rightmost column here. You can break down the
expression into smaller parts and give each part its own column.

'A|B|C|AABAC|AA-BA-C|-AABA-C|-AA-BAC|(AABAC)V(AA-BA-C)V(-AABA-C)V(-AA-BAC)
11 0 0

1 1 0 1
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 O 0 1 0 0 1
0O 1 1 0 0 0 0 0
0O 1 0 0 0 1 0 1
0O 0 1 0 0 0 1 1
O 0 O 0 0 0 0 0

16

Deriving Algorithms from Truth Tables

If we know a set of inputs and outputs as a truth table, we can derive an equation
to represent the inputs and outputs by looking for patterns that match the gates
we know how to build.

For example, let's derive an algorithm to produce the truth table shown below.

(@]

O O O O R R B R
© O P P O O Fr P
© B O P O Fr O P
©O O O B O O R R

17

Deriving Algorithms from Truth Tables

First, note that the Output is only 1 when B is 1. That means that B is required, so the
algorithm canuse BA ??? [B and ???] as a first step, to account for 4/5 of the Os

What should the ??? value be? Note that the only time B is 1 and the Output is O is

when A and C are both 0. This correspondsto AV C[A or C].
Our final equationisBA(AV C)[B and (A or C)].

A | B | C | Avc | BAAVO | Ouput _
1

o O O O Fr P P B

o O R B O O Kk k=

(@]

S rr O r O +r»r O Bk

O kB O R R R R R

© O O r O O Bk

O O O P O O K-k k=

We won't ask you
to do this on
assignments, but
it's a handy thing
to know about

18

Once we've used a truth table to
figure out a logical expression, we
can use it to create a corresponding
circuit.

Just combine the appropriate gates
in the order specified by the
parentheses.

The circuit to the right has the exact
same behavior as the truth table we
made before, as it combines an Or
gate and an And gate in the same
order.

BA(AVC)

\

Circuit to Boolean Expression to Truth Table

Likewise, given a circuit, we can construct its

Frahable _A_| B C_lOutput

(@]

1 1 1 0
Given the circuit shown below, we can construct 1 1 0 0

a truth table either by logically determining the
result, or by simulating all possible input 1 0 1 0
combinations. 1 0 0 0
B 0 1 1 1
0 1 0 1
— 0 0 1 1

B e

0 0 0 0

20

Convert the following circuit to
the equivalent Boolean
Expression, then write the
equivalent truth table.

Which input combinations will
result in the circuit outputting 1
(the light bulb lighting up)?

or

>

not

Let's add a few more gates to simplify our circuits.

A nand gate is - (A A B)

A nor gate is - (A V B)

An xor gate is 1 if exactly one of A
and B are 1 (and the other is 0). It is
the same as (A A -B) vV (-A A B).

© o L B O O K, =

o O = B

o »r O BB

o »r O B

o = O BB

, O O O ~ B = O

o - = O

Abstraction with Gates

Now that we know the basics of interacting with gates and circuits, we
can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:
integer addition.

Let's say that we want to build a
circuit that takes two numbers
(represented in binary), adds them
together, and outputs the result.
How do we do this?

First, simplify. Let's solve a
subproblem. How do we add two
one-bit numbers, X and Y? What are
all the possible inputs and outputs?

Note that 1 + 1 = 10 because we're
working in binary

©c O r B

© r O R

10
01
01
00

Because we need two digits to hold
the result, we need two result
values: Sum (the 1s digit) and Carry
(the 2s digit).

How can we compute Sum and Carry

logically? Examine the truth table:
Sum is just an Xor function, and
Carry is just an And function!

We can make a circuit to do one-bit
addition, as is shown on the right.
This is called a Half-Adder.

o O kL BB

o L O BB

10
01
01
00

o O O

o L =, O

o O O ¥
S »r = O

cary R sum

Now expand the circuit to handle
numbers with multiple bits (e.g. 4-bit
numbers). What needs to change?

When adding two numbers, we might
need to carry an output over to the next
column of the addition.

For the two's column on the right, call
the carried-in bit C,, and next carry C_,.

We need to modify our half-adder to
have a third input C,, and update the
computations for Carry (C_) and Sum.

il 1 <- carried bits

Addition with Gates — Full Adder

To calculate C_ ,, note that it is equivalentto X VY [X or Y]whenC,_ is1, and
equivalentto XA Y [X and Y] whenC, isO.

Sum is now the result of Xor-ing C.. and (X @ Y).

G | X |V | Gt X+Y | Cou | Sum | (XVVAC)VIXAY) | XDV D
1 11 1 1 1

1 1 1

1 1 O 10 1 0 1 0
1 0 1 10 1 0 1 0
1 0 O 01 0 1 0 1
O 1 1 10 1 0 1 0
O 1 O 01 0 1 0 1
0O 0 1 01 0 1 0 1
O 0 O 00 0 0 0 0

28

Finally, to add two four-bit
numbers together, we can just
chain together the Full Adder
we've created four times.

Instead of inputting C. , we pass in
the C_,, from the prior
computation (and pass in O for
the 1s digit). This process repeats
the concept of the Full Adder
multiple times in order to make a
more complex circuit.

The result is really confusing to
look at...

To make this easier to understand,
use abstraction to replace each Full
Adder with a box. That box holds
the Full Adder circuit within it, but it
doesn't need to bother with all the
internal components.

C_out C
Sum

in—O

Iﬁx_o./"o_ﬁ
R

Now we can do proper addition! g
Let's try it out. What's 9 + 3?
* 9is8+1=1001, 3is 2+1=0011

* Walk through the full adders...

* The output is 1100=8+4

e That's 12! It works!

v
3 <
If‘\

"mx_o/O_E
RYE

w

£

3 =<
2]
[

Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've
designed to build an actual hardware
circuit that does 4-bit addition (or
morel).

See a demo of what that looks like
here:

https://youtu.be/wv)Jc9CZcvBc?t=742

31

https://youtu.be/wvJc9CZcvBc?t=742

* Translate Boolean expressions to truth tables and circuits
* Translate circuits to truth tables and Boolean expressions

* Recognize how addition is done at the circuit level using algorithms
and abstraction

* Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

