Graphics

15-110 - Bonus Content



How Tkinter Works — Starter Code

In order to create graphics, we need to take a import tkinter as tk # shorten library name

few preliminary steps. These will be providedto def draw(canvas):

you as starter code, inside makeCanvas (). bass

First, create a new window- that's the thing def makeC (w, h):
that pops up on the screen. \ makelLanvas(w, :
root = tk.Tk()

Second, create a new canvas- that's the thing Y canvas = tk.Canvas(root, width=w, height=h)

we can draw graphics on.
canvas.configure(bd=0,

Next, pack the canvas into the window- that highlightthickness=0)

tells the canvas to fill the whole window. \
canvas.pack()

We'll do all our drawingin draw(). >

draw(canvas)

Finally, the last line will tell the window to stay —— root.mainloop()

open until we press the X button.
makeCanvas (400, 400)



To draw a rectangle, we use the function create rectanglein our
draw function. This function takes four required parameters: the x and
y coordinates of the left-top corner, and the x and y coordinates of the

right-bottom corner. The rectangle will then be drawn between those
two points.

canvas.create rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



We can draw more shapes than just rectangles. To draw an oval,
use create oval. This function uses the same parameters as

create rectangle, where the coordinates mark the oval's
bounding box.

canvas.create oval(1e, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



If you want to draw a square or a circle, you need to ensure that the
width of the shape equals the height.

How can you do that? Make sure that (right - left) is equal to (bottom -
top)!

canvas.create rectangle(50, 100, 150, 200)



With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument is associated with a specific name
instead of a position in the call. We can put keyword arguments in any order
we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create rectangle(50, 100, 150, 200, fill="green")



Keyword Argument - fill

The f111 argument can be used on any
shape. It uses a string (the name of the color)
to change the color of the shape.

canvas.create rectangle(40, 40, 80, 140, fill="red")

canvas.create oval(30, 80, 150, 200, fill="green")

canvas.create rectangle(90, 70, 180, 120, fill="blue")

Note that when we draw shapes on top of
each other, the one on top is the last one
called. Order matters!



What if we want to define our own colors, by using the RGB system we
discussed in the Data Representation system? Python lets us do this, but
we'll need to represent the RGB values in a new number system.

We use the hexadecimal number system to represent a byte with just two
digits. This number system uses base 16. In comparison, normal decimal uses
base 10 and binary uses base 2.

The digits of hexadecimal are : 0123456789ABCDEF

Example: 01111011 = 7B, because 0111 is 7 and 1011 is 11 (B).



Making New Colors

To define a new color, make a string "#RRGGBB", where you replace
RR with the red value in hex, GG with green, and BB with blue.
"#FF69B4" is hot pink!

canvas.create oval(30, 80, 150, 200, fill="#FF69B4")

Interested in finding more Tkinter color names? There's a whole
databank!

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens



https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

Keyword Argument - width

Another keyword argument is width, which

specifies how many pixels wide the border of the
shape should be.

canvas.create rectangle(40, 40, 80, 140, width=5)

canvas.create oval(30, 890, 150, 200,
width=20, fill="green")

canvas.create_rectangle(90, 70, 180, 120,
fill="blue", width=0)

Note that setting width to © removes the border
completely.

10



Drawing Lines

To draw a line on the screen, you
specify the two endpoints of the
line.

canvas.create line(200, 300, 400, 350)
canvas.create _line(20, 100, 90, 300, fill="green")

canvas.create line(100, 100, 300, 300, width=5)

Again, we can use fil1 and
width to modify the lines.

11



Drawing text on the canvas works a bit differently from drawing
rectangles, ovals, and lines. We specify only one coordinate — the pixel
where the center of text will be drawn.

canvas.create text(200, 200, text="Hello World")

Although text is keyword argument and technically optional, text is
required in order to draw text at all.

12



Keyword Argument - font

When drawing text, we can use the keyword argument font to
change the appearance of the text.

The font parameters takes a string with one to three pieces of < _ = [
information — the font name, the font size, and the font type. This 1s fun!

canvas.create_text(200, 200, text="Hello World!",
font="Arial") Hello World!

canvas.create_text(100, 100, text="This is fun!",
font="Times 30")

WVESWOOWEEWO0

canvas.create_text(300, 300, text="weewooweewoo",
font="Courier 10 italic")

You can find a full list of fonts and types here:
https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts

13


https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts

Keyword Argument - anchor

The point used in the canvas.create textcallis

actually an anchor for the text, to describe where it is (L
drawn from. That anchor defaults to the center of the

text box, but we can change it to be any compass point

instead.

canvas.create text(200, 200, text="AAA",
font="Times 30", anchor="center") BBRB AAA

canvas.create_text(0, 200, text="BBB",
font="Times 30", anchor="w")

canvas.create text(400, 0, text="CCC",
font="Times 30", anchor="ne")

Note that the anchor describes the point on the text

box that will correspond to the (x, y) coordinate. Since

CCC's anchoris "ne" (north-east), the upper-right

corner of the text box is placed at (400, 0). y



There's plenty of things Tkinter can draw and plenty of additional
keyword arguments that we haven't covered here.

If you're interested in learning more, check out the Tkinter
documentation: http://effbot.org/tkinterbook/canvas.htm

15


http://effbot.org/tkinterbook/canvas.htm

