
Booleans and Conditionals
15-110 – Friday 02/12

Announcements

• I posted videos on Canvas of the parts we didn't cover last lecture
(14min total). Make sure to watch them!

• Hw1 is due Monday at noon EST

2

Learning Goals

• Use logical operators on Booleans to compute whether an expression
is True or False

• Use conditionals when reading and writing algorithms that make
choices based on data

• Use nesting of control structures to create complex control flow

• Debug logical errors by using the scientific method

3

Logical Operators

4

Booleans are values that can be True or False

In week 1, we learned about the Boolean type, which can be one of
two values: True or False.

Until now, we've made Boolean values by comparing different values,
such as:

x < 5

s == "Hello"

7 >= 2

5

Logical Operations Combine Booleans

We aren't limited to only evaluating a single Boolean comparison! We
can combine Boolean values using logical operations. We'll learn about
three – and, or, and not.

Combining Boolean values will let us check complex requirements
while running code.

6

and Operation Checks Both

The and operation takes two
Boolean values and evaluates to
True if both values are True. In
other words, it evaluates to False if
either value is False.

We use and when we want to
require that both conditions be met
at the same time.

Example:

(x >= 0) and (x < 10)

a b a and b

True True True

True False False

False True False

False False False

7

or Operation Checks Either

The or operation takes two Boolean
values and evaluates to True if either
value is True. In other words, it only
evaluates to False if both values are
False.

We use or when there are multiple
valid conditions to choose from.

Example:

a b a or b

True True True

True False True

False True True

False False False

8

(day == "Saturday") or (day == "Sunday")

not Operation Reverses Result

Finally, the not operation takes a single
Boolean value and switches it to the
opposite value (negates it). not True
becomes False, and not False
becomes True.

We use not to switch the result of a
Boolean expression. For example, not
(x < 5) is the same as x >= 5.

Example:

not (x == 0)

a not a

True False

False True

9

Activity: Guess the Result

If x = 10, what will each of the following expressions evaluate to?

x < 25 and x > 15

x < 25 or x > 15

not (x > 5 and x < 10)

(x > 5) or ((x**2 > 50) and (x == 20))

((x > 5) or (x**2 > 50)) and (x == 20)

10

Conditionals

11

Conditionals Make Decisions

With Booleans, we can make a new type of code called a conditional.
Conditionals are a form of a control structure – they let us change the
direction of the code based on the value that we provide.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:

<bodyIfTrue>

Note that, like a function definition, the top line of the if statement
ends with a colon, and the body of the if statement is indented.

12

Flow Charts Show Code Choices

We'll use a flow chart to demonstrate how Python executes an if
statement based on the values provided.

print("hello")

if x < 10:

print("wahoo!")

print("goodbye")

wahoo! is only printed if x is less
than 10. But hello and goodbye
are always printed.

13

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

The Body of an If Can Have Many Statements

The body of an if statement can have any number of statements in it.
As with function definitions, each statement of the body is on a
separate line and indented. The body ends when the next line of code
is unindented.

print("hello")

if x < 10:

print("wahoo!")

print("wahoo!")

print("goodbye")

14

if x < 10, prints:
hello
wahoo!
wahoo!
goodbye

if x >= 10, prints:
hello
goodbye

Else Clauses Allow Alternatives

Sometimes we want a program to do one of two alternative actions
based on the condition. In this case, instead of writing two if
statements, we can write a single if statement and add an else.

The else is executed when the Boolean expression is False.

if <BooleanExpression>:

<bodyIfTrue>

else:

<bodyIfFalse>

15

}
}

if clause

else clause

Updated Flow Chart Example

print("hello")

if x < 10:

print("wahoo!")

else:

print("ruh roh")

print("goodbye")

16

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

Activity: Conditional Prediction

Prediction Exercise: What will the following code print?

x = 5
if x > 10:

print("Up high!")
else:

print("Down low!")

Question: How can we change the program state to print the other string instead?

Question: Can we change the state to make the if/else statement print out both
statements?

17

Else Must Be Paired With If

It's impossible to have an else clause by itself, as it would have no
condition to be the alternative to.

Therefore, every else must be paired with an if. On the other hand,
every if can have at most one else.

18

Elif Implements Multiple Alternatives

Finally, we can use elif statements to add alternatives with their
own conditions to if statements. An elif is like an if, except that
it is checked only if all previous conditions evaluate to False.

if <BooleanExpressionA>:
<bodyIfATrue>

elif <BooleanExpressionB>:
<bodyIfAFalseAndBTrue>

else:
<bodyIfBothFalse>

19

Updated Flow Chart Example

print("hello")

if x < 10:

print("wahoo!")

elif x <= 99:

print("meh")

else:

print("ruh roh")

print("goodbye")

20

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True False

True

False

print
'meh'

if x < 10

if x <= 99

Conditional Statements Join Clauses Together

We can have more than one elif clause associated with an if
statement. In fact, we can have as many as we need! But, as with else,
an elif must be associated with an if (or a previous elif).

In general, a conditional statement is an if clause with zero or more
elif clauses and an optional else clause that are all joined together.
These joined clauses can be considered a single control structure. Only
one clause will have its body executed.

21

Example: gradeCalculator

Let's write a few lines of code that takes a grade as a number, then
prints the letter grade that corresponds to that number grade.

90+ is an A, 80-90 is a B, 70-80 is a C, 60-70 is a D, and below 60 is an R.

22

Short-Circuit Evaluation

When Python evaluates a logical expression, it acts lazily. It only evaluates
the second part if it needs to. This is called short-circuit evaluation.

When checking x and y, if x is False, the expression can never be True.
Therefore, Python doesn't even evaluate y.

When checking x or y, if x is True, the expression can never be False.
Python doesn't evaluate y.

This is a handy method for keeping errors from happening. For example:

if type(x) == type(y) and x < y:
print("Smaller:", x)

23

Two New Math Operators

When we write algorithms using control structures, we may want to check whether
a number has certain properties (like being even or a multiple of ten). We can do
this using some new operators.

Modulo, or mod (%) finds the remainder when one number is divided by another.
For example, 7 % 4 is equal to 3.

Check if a number is even with x % 2 == 0 .

Floor division, or div (//) divides numbers by rounding down to nearest whole
number. This effectively cuts off any digits after the decimal point.

For example, 7 // 4 is equal to 1, not 1.75.

Cut off the last digit of a number with x // 10 .
24

Nesting Control Structures

25

Nesting Creates More Complex Control Flow

Now that we have a control structure, we can put if statements inside
of if statements.

In general, we'll be able to nest control structures inside of other
control structures. We can also nest control structures inside of
function definitions.

In program syntax, we demonstrate that a control structure is nested by
indenting the code so that it's in the outer control structure's body.

26

Example: Car rental program

Consider code that determines if a person can
rent a car based on their age (are they at least
26) and whether they have a driver's license.

We can use one if statement to check their
age, then a second (nested inside the first) to
check the license. We'll only print 'Rental
Approved' if both if conditions evaluate to
True.

if age >= 26:
if license == True:

print("Rental Approved")
else:

print("Rental Denied")
else:

print("Rental Denied") 27

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True Falseif license == True

if age >= 26

Alternative Car Rental Code

In the code below, we accomplish the
same result with the and operation.

This won't always work, though – it
depends on how many different results
you want.

if age >= 26 and license == True:

print("Rental Approved")

else:

print("Rental Denied")

28

print
'Rental Approved'

print
'Rental Denied'

True False
if age >= 26 and
license == True

Nesting and If/Elif/Else Statements

When we have nested conditionals with elif or else clauses, Python pairs
them with the if clause at the same indentation level. This is true even if an inner
if statement occurs between the outer clauses! However, an outer if/elif/else
statement cannot come between parts of an inner conditional.

if first == True:
if second == True:

print("both true!")
else:

print("first not true")

Question: if we want to add an else statement to the inner if, where should it go?

29

Nesting Conditionals in Functions

When we nest a conditional inside a function definition, we can return
values early instead of only returning on the last line. Returning early is fine
as long as we ensure every possible path the function can take will
eventually return a value.

A function will always end as soon as it reaches a return statement, even if
more lines of code follow it. For example, the following function will not
crash when n is zero.

def findAverage(total, n):
if n <= 0:

return "Cannot compute the average"
return total / n

30

Exercise: Convert Flow Chart to Code

31

print
"It's a fish"

print
"It's a dog"

print
"It's a cat"

True

False

print
"What a good pet!"

if numLegs != 4

if wagsTail == True

False

True

Testing and Debugging with
Control Structures

32

Test Cases Use assert Statements

Starting with the next assignment, the starter file for programming assignments
will contain test cases. A test case is a line of code that checks whether a function
produces the expected output on a given input:

assert(findAverage(20, 4) == 5)

An assert statement takes a Boolean expression. If the expression evaluates to
True, the statement does nothing. If it evaluates to False, the program crashes.

To check your solutions against the test cases, use Run File as Script. If you have
not commented out the test cases and the file runs without crashing, your code is
(probably) correct. On the other hand, if your code throws an AssertionError,
that means you have a logical error in one or more of your solutions.

33

Debug Logical Errors By Checking Inputs and Outputs

When your code generates a logical error,
the best thing to do is compare the
expected output to the actual output.

1. Copy the function call from the assert
that is failing into the interpreter.
Compare the actual output to the
expected output.

2. If the expected output seems incorrect,
re-read the problem prompt.

3. If you're not sure why the actual output
is produced, use the debugging process
to investigate.

If you've written the test set yourself, you
should also take a moment to make sure
the test itself is not incorrect. function call

expected output

Sidebar: Clean Up Top-Level Testing

Some students like to test their code by adding print statements and
function calls at the top level of the code (not inside a function).

This is fine, but if you do this, remove the top-level code before you
submit on Gradescope. Otherwise, the tool might mark your entire
submission as incorrect instead of only marking the single broken
function.

Alternative approach: do testing in the interpreter! After you 'Run File
as Script', all of your functions are available there to be tested.

35

Understanding Your Code

When something goes wrong with your code, before rushing to change
the code itself, you should make sure you understand conceptually
what your code does.

First- make sure you're solving the right problem! Re-read the problem
prompt to check that you're doing the right task.

If you find yourself getting stuck, try rubber duck debugging. Explain
what your code is supposed to do and what is going wrong out loud to
an inanimate object, like a rubber duck. Sometimes, saying things out
loud will help you realize what's wrong.

Debug with the Scientific Method

When you're trying to debug a tricky error, you should use a process
similar to the scientific method. We'll reduce it down to five core steps:

1. Collect data

2. Make a hypothesis

3. Run an experiment

4. Observe the result

5. Repeat the process (if necessary)

Step 1: Collect Data

First, you need to collect data about what your code is currently doing.

You can already see the steps of your algorithm, but you can't see how the
variables change their values while the program runs. Add print calls at
important junctures in the code to see what values the variables hold.

Each print call should also include a brief string that gives context to what is
being printed. For example:

print("Result pre-if:", result)

Step 2 & 3: Make a Hypothesis; Experiment

At a certain point, you should see something in the values you are
printing that is unexpected. At that point, make a hypothesis about
why the variable is holding that value.

Once you have a hypothesis, test it by making an appropriate change in
your code. For example, if you think the code never enters an if
statement, add a print to the beginning of the conditional body to see if
it gets printed.

Note: do not change things randomly, even if you get frustrated! Even if
it makes you code work on one test, it might start failing another.

Step 4: Observe the Result

Once you've made the change, observe the result by checking the new
output of your code.

print calls are still helpful here. You can also use variable tables to see how
a variable's behavior changes before vs. after the experiment, by writing out
the value in a variable at each juncture of the code by hand.

For particularly tricky code, there are online visualization tools that let you
see how your code behaves step-by-step. Here's one we recommend:
pythontutor.com/visualize.html

http://pythontutor.com/visualize.html#mode=edit

Step 5: Repeat As Necessary

Finally, know that you may have to repeat the debugging process
several times before you get the code to work.

This is normal; sometimes bugs are particularly hard to unravel, and
sometimes there are multiple different bugs between your code and a
correct solution.

Debugging is Hard

Finally, remember that debugging is hard! If you've spent more than 15
minutes stuck on an error, more effort is not the solution. Get a friend
or TA to help, or take a break and come back to the problem later. A
fresh mindset will make finding your bug much easier.

Learning Goals

• Use logical operators on Booleans to compute whether an expression is True or
False

• Use conditionals when reading and writing algorithms that make choices based
on data

• Use nesting of control structures to create complex control flow

• Debug logical errors by using the scientific method

• Feedback: http://bit.ly/110-s21-feedback

43

http://bit.ly/110-s21-feedback

