
Functions II & How Python Works
15-110 – Wednesday 02/10

Announcements

• Feedback is now released for Check1
• To view your feedback, open your assignment in Gradescope, then click on

the question name on the right sidebar that you want to see feedback for.

• Note that all rubric items are displayed by default; the rubric items applied to
your submission should be highlighted.

• If you find a grading error, use the Request Regrade button to ask the Lead
TAs to take a second look

2

Learning Objectives

• Trace the call stack to understand how Python keeps track of nested
function calls

• Use libraries to import functions in categories like math, randomness, and
graphics

• Recognize that the process of tokenizing, parsing, and translating converts
Python code into instructions a computer can execute

• Recognize how the different types of errors are raised at different points in
the Python translation process

3

The Function Call Stack

4

Function Calls Follow Order of Operations

Function calls evaluate to a single returned value; that means they are
expressions. Therefore, we can nest function calls inside other
expressions the same way we nest basic values and operations.

print(round(pow(abs(-12), 1/2), 2))

Just like in math, functions follow order of operations using
parentheses. Start by evaluating the inner-most expressions,
abs(-12) and 1/2. Then evaluate the call to pow; then evaluate the
call to round. Finally, evaluate the call to print.

5

Function Calls in Function Definitions

Order of operations gets trickier to track
when we write code in a function
definition that calls another function.

When the code to the right calls the
function outer, outer will run a bit of
code, then call the function inner.

Python needs to keep track of which
variables are in scope at any given
point, and where returned values
should be sent. It does this with a call
stack.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

6

Functions and the Call Stack

Python executes the function line-by-
line until it reaches a function call. It
saves the global state of the program
on the call stack.

Then it just adds a new layer to the
stack, on the top!

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

7

Call Stack

[] ; print(outer(4))

Interpreter:
>>>

Functions and the Call Stack

Python moves through the definition
line by line, using the state of the top
stack level when it needs to look up
variable values. It can also update that
top-stack-level state as needed.

The lower levels are ignored for now.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

8

Call Stack

[] ; print(outer(4))

[x=4] ; y = x / 2

Interpreter:
>>>

Functions and the Call Stack

When Python reaches the call to inner
inside of outer, it just adds another level
to the stack!

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

9

Call Stack

[] ; print(outer(4))

[x=4,y=2.0];return inner(y) + 3

Interpreter:
>>>

Functions and the Call Stack

Again, Python will move through the
function normally.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

10

Call Stack

[] ; print(outer(4))

[x=4,y=2.0];return inner(2.0) + 3

[x=2.0] ; y = x + 1

Interpreter:
>>>

Functions and the Call Stack

When it reaches a return statement, it
will evaluate the returned value, then
remove the top level of the stack. The
returned value is then sent to the call
on the new top level, where it replaces
the call.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

11

Call Stack

[] ; print(outer(4))

[x=4,y=2.0];return inner(2.0) + 3

[x=2.0,y=3.0] ; return y

Interpreter:
>>>

Functions and the Call Stack

When it reaches a return statement, it
will evaluate the returned value, then
remove the top level of the stack. The
returned value is then sent to the call
on the new top level, where it replaces
the call.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

12

Call Stack

[] ; print(outer(4))

[x=4,y=2.0] ; return 3.0 + 3

Interpreter:
>>>

Functions and the Call Stack

The print call will also technically put
a new level on the call stack, but we
can't see into what the print function
is doing since we didn't write it
ourselves.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

13

Call Stack

[] ; print(6.0)

Interpreter:
>>>

Functions and the Call Stack

The print call causes a side effect... def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

14

Call Stack

[] ; print(6.0)

Interpreter:
>>> 6.0

Functions and the Call Stack

... then evaluates to None. Then it's
done!

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

15

Call Stack

[] ; None

Interpreter:
>>> 6.0

Activity: Trace the Function Calls

Now you try it! Given the code to the
right, draw a call stack to determine
what will be printed.

Make sure to keep track of the state on
each level.

def calculateTip(cost):

tipRate = 0.2

return cost * tipRate

def payForMeal(cash, cost):

cost = cost + calculateTip(cost)

cash = cash - cost

print("Thanks!")

return cash

wallet = 20.00

wallet = payForMeal(wallet, 8.00)

print("Money remaining:", wallet)

16

Libraries

17

Import Adds Code from Libraries

The Python language has a ton of pre-built functions, but most aren't included in
the built-in package (the one available by default). Most of the functions are
organized into separate libraries.

To use a function from a library, you must import the library. This makes it possible
to access the functions and variables in that collection. You can do this with the
code:

import libraryName

All the Python libraries have documentation online that describes which functions
are available and what they do. Find it by searching docs.python.org/3/ . It's better
to check the documentation as needed than to try to memorize library functions.

18

https://docs.python.org/3/

Importing the math Library

For example, we can import the math library to add more
mathematical capabilities. Note that we must put math. in front of
each function or variable name we use, to specify it came from that
library.

import math

math.ceil(6.5) # ceiling of a float number

math.log(64, 2) # finds the log of 64 with base 2

math.radians(90) # converts degrees to radians

math.pi # it's π!

19

Importing the random library

Importing libraries lets us get more creative with programming. For example, the
random library lets us generate random numbers, which can help produce novel
behavior.

import random

random.randint(1, 10) # picks a random int between 1-10 inclusive

random.random() # picks a random float between 0-1

20

Importing a graphics library

Finally, to get really creative, we can produce graphics with
programming! We'll do this with the tkinter library, which makes it
possible to draw shapes on a separate screen.

import tkinter

21

Tkinter Starter Code

We need to run some code before
and after our graphics code to make
it work.

The root is the window. The
canvas is the thing on the window
where we can draw shapes.

The root.mainloop() line will tell
the window to stay open until we
press the X button.

import tkinter as tk # shorten library name

You write code in here!
def draw(canvas):

pass

def makeCanvas(w, h):
root = tk.Tk()
canvas = tk.Canvas(root, width=w,

height=h)
canvas.configure(bd=0,

highlightthickness=0)
canvas.pack()

draw(canvas) # call your code here

root.mainloop()

makeCanvas(400, 400)

22

Coordinates on the Canvas Grow Down-Right

The canvas created by the starter code is the thing we'll draw graphics on. It's a
two-dimensional grid of pixels. This grid has a pre-set width and height; the
number of pixels from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these
coordinates are different from coordinates on mathematical graphs – the origin
starts at the top left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas

23

Drawing a Rectangle

To draw a rectangle, use the function canvas.create_rectangle.
This function takes four required arguments: the x and y coordinates of
the left-top corner, and the x and y coordinates of the right-bottom
corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

24

Graphics – Side Effects and Returned Values

When the rectangle is drawn on the canvas, we can't use it in future
computations. That's a side effect.

The graphics function call also returns something – an integer ID
associated with the drawn shape. We won't use that value in this class.

You can draw a lot more than just rectangles with Tkinter graphics!
Check out the bonus slides on graphics to find more shapes.

25

Keyword Arguments Add Variety

With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument is associated with a specific name
instead of a position in the function call. We can put keyword arguments in
any order we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")

26

Keyword Argument - fill

The fill argument can be used on any shape. It uses a
string (the name of the color) to change the color of the
shape.

Note that when we draw shapes on top of each other,
the one on top is the last one called. Order matters!

Check the bonus slides to find more keyword arguments.

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_rectangle(30, 80, 150, 200, fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

27

Tokenizing, Parsing, Translating

28

The Interpreter Turns Python Code to Bytecode

Python code is abstracted – it's written at a level humans can understand. But this
is too high-level for a computer to follow the text directly.

A computer does know how to follow a small set of instructions that are built into
its hardware. These instructions are called machine code. One step up from
machine code is bytecode, a language for a slightly-simplified computer.

The job of the interpreter is to translate your Python code into bytecode, which the
computer can then run.

To do this translation, the interpreter tokenizes, parses, and translates the code.

29

Tokenizing Splits Text into Tokens

First, the interpreter takes a big set of text
(the Python program) and breaks it into
tokens.

It identifies natural break points based on
the grammar of the language. For
example, in the code to the right, the
tokens produced would be:

x, =, 52, newline, col, =, x, /, (, 500, /, 50,)

x = 52

col = x / (500/50)

30

Parsing Groups Tokens by Task

Next, the interpreter parses the
sequence of tokens into a structured
format called a parse tree.

This tree groups together tokens that
are part of the same action.

For example, given the tokens to the
right, the interpreter would
recognize that = is an action taken
with x as the target variable and 52
as the value.

x, =, 52, newline,

col, =, x, /, (, 500, /, 50,)

31

...

= =

x 52 col

500 50

/

x /

Translate Parse Trees to Bytecode

Once code has been parsed, the interpreter can translate it into a different
language, bytecode.

Bytecode is composed of a small list of instructions that can be run by any
computer. This means that a program you write on your laptop will run the
same way on a school computer. Bytecode translates directly to machine
code, which is built into every computer's hardware.

You can find a full list of the bytecode instructions associated with Python
here:

docs.python.org/3/library/dis.html#python-bytecode-instructions

32

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

Bytecode is a Simple Language

Bytecode instructions are very simple and structured. Each line has a single
instruction, which consists of a command name and (sometimes) a number.
For example:

LOAD_NAME 0 # load the variable at position 0

Because the language is so simple, it relies on additional components to run:
a few tables of values, which form the program's memory, and a stack,
which keeps track of the program's state as it runs.

When we run a Python program, we're actually running bytecode behind the
scenes!

33

Python Errors

34

Tokenizing and Parsing Errors are Syntax Errors

The first two steps of the Python translation process – tokenizing and
parsing – are based on the Python language's syntax. Syntax is a set of
rules for how code instructions should be written.

If the interpreter runs into an error while tokenizing or parsing, it calls
that a syntax error. You get a syntax error when the code you provide
does not follow the rules of the Python language's syntax.

35

Examples of Syntax Errors

Most syntax errors are called SyntaxError, which make them easy to spot. For example:

x = @ # @ is not a valid token
4 + 5 = x # the parser stops because it doesn't follow the rules

There are two special types of syntax errors: IndentationError and incomplete error.

x = 4 # IndentationError: whitespace has meaning

print(4 + 5 # Incomplete Error: always close parentheses/quotes

36

Bytecode-Running Errors are Runtime Errors

If an error occurs as bytecode is being executed, it's called a runtime
error. That's because the error occurs as the code is running!

Runtime errors have many different names in Python. Each name says
something about what kind of error occurred, so reading the name and
text can give you additional information about what went wrong.

37

Examples of Runtime Errors

print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

We'll see more types of runtime errors as we learn more Python syntax.

38

Other Errors are Logical Errors

If we manage to translate Python code into bytecode and it runs
completely, does that mean it's correct?

Not necessarily! Logical errors can occur if code runs but produces a
result that was not what the user intended. The computer can't catch
logical errors because the computer doesn't know what we intend to
do.

Logical errors will be the hardest to find and fix. We'll talk more about
addressing them in the next lecture.

39

Examples of Logical Errors

print("2 + 2 = ", 5) # no error message, but wrong!

def double(x):

return x + 2 # adding instead of multiplying

Later, we'll use assert statements to catch logical errors in homework
assignments.

40

Activity: Predict the Error Type

Let's test your knowledge of error types with a Kahoot!

Given a line of code, predict whether it will result in a Syntax Error,
Runtime Error, Logical Error, or no error.

Join at kahoot.it

41

https://kahoot.it/

Learning Objectives

• Trace the call stack to understand how Python keeps track of nested function calls

• Use libraries to import functions in categories like math, randomness, and graphics

• Recognize that the process of tokenizing, parsing, and translating converts Python code
into instructions a computer can execute

• Recognize how the different types of errors are raised at different points in the Python
translation process

• Feedback: http://bit.ly/110-s21-feedback

42

http://bit.ly/110-s21-feedback

