Functions

15-110 — Monday 02/08

* Checkl was due at noon today. If you forgot to turn it in, you can still
submit up until the revision deadline!

 We'll get feedback released within 24 hours

e Don't use the built-in Firefox PDF editor — it causes issues with text sizes.

* Note that Hw1 has a programming component. You'll need to download
the programming starter file, edit it, run the code to check if it works, and
eventually submit it to Gradescope.

* Gradescope autogrades most of the programming assignments. Let's demo how that
works...

From last time...

Your computer keeps track of saved data and all the information it
needs to run in its memory, which is represented as binary. You can
think about your computer's memory as a really long list of bits, where

each bit can be set to 0 or 1. But usually we think in terms of bytes,
groups of 8 bits.

Every byte in your computer has an address, which the computer uses
to look up its value.

49 | 53 | 49 | 49 | 48 | 75 | 101|108 | 198 | 121 | 77 | 97 | 114 | 103 | 97 | 114 | 101 | 116

L 1000 Addresses L 1004 L 1008 L 1012 L 1016

When you open a file on your computer, the application goes to the

appropriate address, reads the associated binary, and interprets the
binary values based on the file encoding it expects. That interpretation

?Iepends on the application you use when opening the file, and the
iletype.

You can attempt to open any file using any program, if you convince
your computer to let you try. Some programs may crash, and others will
show nonsense because the binary isn't being interpreted correctly.

Example: try chan%ing a .docx filetype to .txt, then open it in a plain
tAeSthlcleditor. .docx files have extra encoding, whereas .txt files use plain

* [dentify the argument(s), returned value, and side effect(s) of a
function call

e Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

* Recognize the difference between local and global scope

Repeating Actions Is Messy

Sometimes we want to perform the
same algorithm many times on different
inputs.

For example, say we want to personalize
a young child's reading material so that
it uses their pet's name.

We could copy and paste the first bit of
code, then change the necessary parts.
But if we're sloppy this might cause
errors.

petl = "Spot"”

pet2 = "Stella”

pet3 = "Kimchee"

print("See " + petl
" run. Run, "

print("See " + pet2
" run. Run, "

print("See " + pet3
" run. Run, "

+ o+

+ o+

-+

. See
petl +
". See
pet2 +
". See
pet3 +

+ petl +
, run!")

+ pet2 +
, run!")

+ petl +
, run!™)

A better approach is to put the core action being repeated into a
function.

A function is a code construct that represents an algorithm. We can
define a function once, then call it many times.

We can also use functions that have already been defined by Python.

Function Calls

We've already seen how to call a function on a specific input, because
print isjust a function! This is done using parentheses.

functionName(inputl, input2, ...)

The number of inputs provided inside the parentheses depends on how
many inputs the function expects. Each input should be an expression.

A Few New Functions

To help us explore how functions work, let's introduce a few new

functions. These are built-in functions, like print; that means we can
call them in Python directly.

abs(-2) # absolute value
pow(2, 3) # raises a number to the given power
round(12.4567, 2) # rounds to the given # sig digs

11

Type Functions

There are a few other built-in functions that are helpful to know, as they let
you change the type of data values. This is called type-casting.

int("4") # converts a value to an integer
float(3) # converts a value to a float
str(98.9) # converts a value to a string
bool(0) # converts a value to a Boolean

type(4 + 3.0) # returns the type of the eventual value
uses the names we covered before - int, float, str, bool

12

The functions we call may have three components:

Argument(s) — the values that are provided inside the parentheses

Returned Value — what the function evaluates to after running

Side Effect(s) — any change(s) that happen while the function runs

The specific inputs we provide to a function are called arguments. These are
like the specific bread, peanut butter, and jelly we used in the PB&J
algorithm. In the function call abs(4), the argument is 4.

Arguments are separated by commas and placed between the parentheses
of the function call. Functions can require as many (or as few) arguments as
needed.

The positions of the arguments usually have meaning. In pow(2, 3), the
first argument is the base and the second argument is the exponent. In other
words, pow(2, 3) and pow(3, 2) mean two different things.

When a built-in function takes its arguments and runs through its
algorithm, we cannot see what it is doing.

When the function is done, it sends back an output as a returned
value. We usually say a function returns a value. This value substitutes

in for the function call the same way a variable's value substitutes in for
the variable.

For example, the returned value of pow(2, 3) is 8.

Python needs to keep track of certain pieces of data that change over time as a
program runs (like which variables exist and what their values are, what has been
printed to the screen, etc). We call this information the program state. When you
set a variable to a new value, you change that program's state.

Sometimes a function changes the program state in an observable way as it is
running; for example, it might display values in the interpreter, or modify a file, or
produce graphics. This is called a side effect.

If we call pow(2, 3),thereis no observable side effect. But print("Hello")
has an observable side effect: it prints "Hello" to the screen.

It's easy to get confused about whether something is a side effect or a
returned value. Why are these two components different?

The way we've set up function calls means that there must be exactly one
output: the returned value. A function call might have no side effects, or
one, or many; however, every function call has one returned value.

Importantly, returned values can be saved in a variable and used in future
computations. Side effects cannot be saved; we simply observe them.

If a function produces no explicit output (usually because it is only used for
side effects, like print), it still has a returned value. That value is the built-in

value None.

None means that there was no explicit output to be returned. Like True and
False, its meaning is built into Python, so it does not need quotes.

If you try to set a variable to a print call, you'll find that the variable holds
None. Note that None does not show up in the interpreter unless you

explicitly print it; the interpreter just shows a blank instead.

>>> None

>>> print(None)
None

18

Function Call Process

Argument(s)

|

Function

|

Returned
Value

AR
s

Side
effect(s)

19

Activity — Identity the Function Call Parts

Consider the following two function calls. For each function call, what
are its argument(s), returned value, and observable side effect(s)?

round(3.14159, 1)

pr\int(lllslI, ll_ll, "11@")

20

Function Definitions

Now that we have all the individual components of functions, we can
write new function definitions ourselves.

To write a function, you need to determine what algorithm you want to
implement. You'll convert that algorithm into code that runs on

abstract input.

Let's start with a simple function that
has no explicit input or output;
instead, it has a side effect (printed
lines).

def helloWorld():
print("Hello World!")
print("How are you?")

helloWorld()

def is how Python knows the following code is a
function definition

helloWorldisthe name of the function. This is
how we'll call it.

The colon at the end of the first line, and the
indentation at the beginning of the second and third,
tell Python that we're in the body of the function.

The body holds the algorithm. When the indentation
stops, the function is done.

In this example, the last line calls the function we've
written.
23

Parameters are Abstracted Arguments

To add input to the function definition, add parameters inside the parentheses next
to the name.

These parameters are variables that are not given initial values. Their initial values
will be provided by the arguments given each time the function is called.

def hello(name):
print("Hello, " + name + "!")
print("How are you?")

hello("Stella")
hello("Dippy")

24

To make our function have a non-None output, we need to have a return
statement. This statement specifies the value that should be substituted for
the function call when the function is called on a specific input.

def makeHello(name):
return "Hello, " + name + "! How are you?"

s = makeHello("Scotty")

As soon as Python returns a value, it exits the function. Python ignores any
lines of code after a return statement.

25

Example Side Effect Function

As in function calls, we can implement side effects in function definitions by
writing code that changes the program's state. The following function call
has several observable side effects and a returned value of None.

def singHappyBirthday(name):
print("Happy birthday to you")
print("Happy birthday to you")
print("Happy birthday dear " + name)
print("Happy birthday to youl!")

val = singHappyBirthday("Dippy")

26

Example Return Function

On the other hand, this function call has a float as the returned value
and no side effects.

def addTip(cost, percentToTip):
return cost + cost * percentToTip

total = addTip(20.00, 0.17)

27

Activity: Side Effects and Returned Value

You do: what are the observable side effects and returned value of the
following function call?

def distance(x1l, yl, x2, y2):
xPart = (x2 - x1)**2
yPart = (y2 - yl)**2
print("Partial Work:", xPart, yPart)
return (xPart + yPart) ** 0.5

result = distance(@, 0, 3, 4)

28

Scope

Variables Have Different Scopes

All the work done in a function is only accessible in that function. In other
words, if we make a variable in a function, the outer program can't access it;
the only way to transmit its value is to return it.

def addItUp|(x, y, z):
answer = X + y
answer = answer _+ Z

print(answer) # NameError!

The variable answer has a local scope and is accessible only within the
function addItUp.

30

On the other hand, if a function is told to use a variable it hasn't defined, the function
automatically looks in the global scope (outside the function at the top level) to see if the
variable exists there.

X <=5

def testl():
y =X + 2
return y

print(test() - x)

If you change a global variable in a function, that's a side effect! It's unlikely that you'll
want to use this, but good to know for debugging.

You can think of the scope of a variable
as being like its last name. For example,
consider the following code:

X — Ilbar\ll
def test():
X = "foo"

print("A", Xx)

test()
print("B", Xx)

X exists in both the local and the global
scope, but the two x variables are
separate and have different values.

Analogy: knowing two people both
named Andrew. They have the same
first name, but different last names.

In the code above, the last name of the
function's x would be test, while the last
name of the top-level x would be global.

In general, it's best to keep variable
names different to avoid confusion.

Activity: Local or Global?

Which variables in the following code snippet are global? Which are local?

For the local variables, which function can see them?

name = "Farnam"

def greet(day):
punctuation =

print("Hello, " + name + punctuation)

print("Today 1is

def leave():
punctuation =
print("Goodbye,

greet("Wednesday")
leave()

+ day + punctuation)

+ name + punctuation)

33

* |dentify the argument(s), returned value, and side effect(s) of a function
call

* Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

* Recognize the difference between local and global scope

* Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

