
Unit 4 Review
15-110 – Wednesday 04/28

Announcements

• Check6-1 revision deadline was today

• Check6-2 deadline is Friday at noon

2

Agenda

• Unit 4 Overview

• Reading and Reformatting Data

• Matplotlib Coding

• Simulation Coding

3

Unit 4 Overview

4

Unit 4 Goals

Our fourth unit explored how computer science could be used as a tool
in other domains. We discussed this in two stages: how to model
domain-specific data, and how to answer questions about that data.

How did the topics we discussed fit into these themes?

5

Modeling Data

In data analysis, we discussed how you can read and write files and interpret
data with protocols to load real data into a program. We also learned how to
reformat data to meet the task's needs.

In simulation, we learned about the model-view-controller framework,
where we store data in a shared structure, represent it graphically with a
view, and update it over time or based on events.

In machine learning, we talked about how to choose different categories of
learning and reasoning based on the features being analyzed. We also used
game decision trees to model data for AI agents.

6

Answering Questions

In data analysis, we discussed a few common analysis methods, and
used Matplotlib to visualize data as charts.

In simulation, we used Monte Carlo methods to run experiments over
simulations and find the expected results.

In machine learning, we discussed how we use data to train, validate,
and test a reasoning model, and how an AI can perceive, reason, and
act to accomplish a goal. We also used the Minimax algorithm and
heuristics to help an AI find a good next action quickly.

7

Upcoming Topics

Our final unit will address how computer science affects the world by
diving into history, exploring questions regarding ethics in the present
day, and looking forward at the future.

We'll wrap up the course with a single lecture exploring different
opportunities in the School of Computer Science.

8

Reading and Reformatting Data

9

Opening Files

To read a file from your computer into a string, you first need to call the
open() built-in function with the filepath of the file.

If the file is in the same directory as the Python file, the filepath is just
its name. If it's in a folder, use "folder/name" instead, with "/"
separating the folder's name from the file's name.

This can be repeated for nested folders - for example,
"project/data/all-icecream.csv".

10

Reading Files

Once you've opened a file properly, you'll have a file object stored in a
variable. The simplest way to get data from that file object is to call the
read() method on it:

text = f.read()

This reads all the text from the file into a string and stores that string in
the variable. You can then parse the variable to separate lines or parts
of lines as needed.

11

Rearrange Data to Solve Problems

We often need to rearrange the data that is loaded in from a file in
order to answer specific questions about it.

Often this involves identifying patterns that locate the part of the data
we care about, then ignoring the rest.

Slicing, str.find(), str.split(), and str.strip() are useful
tools for reformatting data.

12

Example: Parsing Website Data

We want to generate a list of all the lectures in 15-110 by date and
topic based on the text on the Schedule page. Copying that information
by hand is tedious; instead, let's read and reformat the data!

Copy all the text from https://www.cs.cmu.edu/~110/schedule.html
into a .txt file in the same directory as the code file.

13

https://www.cs.cmu.edu/~110/schedule.html

Inspect the data

How can we parse out the date and lecture topic from the data? We
need to look for groupings of data and patterns that always occur
around that information.

14

WEEK DATES DUE DATES TOPICS MATERIALS RECORDINGS PRACTICE EXERCISE
UNIT: Programming Skills and Computer Organization
1 02/01 Mon Lecture: Course Intro & Algorithms and Abstraction Mon slides Mon recording Mon practice Ex1-1
02/02 Tue
02/03 Wed Lecture: Programming Basics Wed slides - code Wed recording Wed practice Ex1-2
02/04 Thu Recitation Rec problems
02/05 Fri Lecture: Data Representation Fri slides Fri recording Fri practice Ex1-3
2 02/08 Mon Check1 Lecture: Functions Mon slides - code Mon recording Mon practice Ex2-1
02/09 Tue
02/10 Wed Lecture: Functions II & How Python Works Wed slides - code
Bonus Graphics slides - graphics starter code Wed recording Wed practice Ex2-2
(Optional)
02/11 Thu Recitation Rec problems - code - extra problems
02/12 Fri Lecture: Booleans and Conditionals Fri slides - code Fri recording Fri practice Ex2-3
...

Inspect the Data

How is the data grouped? Each date and lecture are paired on the same
line. We should start by splitting the data across lines. (Not all lines
have a date and lecture, though).

How to lines separate points of information? Look closely and you'll see
that each column is separated by tabs. Split each line by tabs to get the
items.

15

Load the data

f = open("schedule.txt", "r")

text = f.read()

f.close()

lines = text.split("\n")

data = []

for line in lines:

data.append(line.split("\t"))

16

Find the Relevant Information

Each line is now a list of tokens. We want to find the token that holds
the date and the token that holds the lecture title.

How is the date different from the rest of the data? It always takes the
format XX/XX DAY. Check whether characters 0-1 and 3-4 of the string
are numbers.

17

Find the Date

for line in data:

date = None

for token in line:

if token[:2].isdigit() and token[3:5].isdigit():

date = token[:token.find(" ")] # remove day

18

Find the Relevant Information Pt. 2

How can we find the lecture title?

Each lecture title starts with Lecture: . Check whether the token starts
with that text.

Slice off the "Lecture: " before storing the information to make the data
cleaner.

19

Find the Lecture Title

for line in data:

...

lecture = None

for token in line:

...

elif token[:8] == "Lecture:":

lecture = token[9:]

20

Store the results

Now we just have to combine the results in a string and store them in a
new list.

We can finally print out a nice, cleaned list of lectures with their dates.
Nice!

21

Put it Together

lectures = []

for line in data:

...

if date != None and lecture != None:

lectures.append(date + " " + lecture)

for item in lectures:

print(item)

22

Every Problem is Different

Every data analysis problem will require a different approach to
reformat the data.

What's most important is that you look for the patterns in the data,
and identify algorithmic techniques that will let you recognize those
patterns.

23

Matplotlib Coding

24

Coding with Matplotlib

Writing code with Matplotlib isn't like writing code to solve a
homework problem.

Instead of solving everything from scratch, you may need to refer to
examples to determine how to add certain features to your charts.

Why is this different? The Matplotlib library is huge. It isn't efficient to
memorize every possible function- it's better to look up functions when
you need them.

25

Example: Making a Scatter Plot

Goal: we want to visually compare the most popular ice cream flavors
in our dataset to determine if there are any interesting trends in which
flavors were chosen most often as the 1st vs 2nd favorite flavor.

Start with the code from the Data Analysis II lecture that creates a
dictionary from the ice cream flavors. Since we want to investigate the
correspondence between 1st and 2nd favorites, we'll update the code to
only read data from one column.

26

Updated getIceCreamCounts

def getIceCreamCounts(data, colName):
iceCreamDict = { }
col = data[0].index(colName)
for i in range(1, len(data)): # skip header

flavor = data[i][col]
if flavor not in iceCreamDict:

iceCreamDict[flavor] = 0 # start new count
iceCreamDict[flavor] += 1

return iceCreamDict

import csv
f = open("all-icecream.csv", "r")
data = list(csv.reader(f))
f.close()

firstCounts = getIceCreamCounts(data, "#1 cleaned")
secondCounts = getIceCreamCounts(data, "#2 cleaned")

27

Reformat Data

For each flavor, we want to compare the number of #1 preferences for
that flavor to the number of #2 preferences for that flavor.

First, we need to write some code to restructure the data from a
dictionary to three lists- the flavors, #1 counts, and #2 counts. Let's also
narrow down our data to only include flavors that appear at least 10
times.

We need to account for three possibilities – a flavor might occur in both
dictionaries, in just the first dictionary, or in just the second dictionary.

28

Reformatting Data

flavors = []
firstPrefs = []
secondPrefs = []

for flavor in firstCounts:
first = firstCounts[flavor]
if flavor in secondCounts:

second = secondCounts[flavor]
else:

second = 0

if first + second >= 10:
flavors.append(flavor)
firstPrefs.append(first)
secondPrefs.append(second)

...

...

for flavor in secondCounts:
if flavor not in firstCounts:

second = secondCounts[flavor]
if second >= 10:

flavors.append(flavor)
firstPrefs.append(0)
secondPrefs.append(second)

29

Scatter Plot Demo

Each of these data types is numerical, and there are two dimensions,
so we need a scatterplot. Search the plt documentation to find the
right method.

This shows that the function we need is plt.scatter(). We can read
about its arguments here:

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html

30

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html

Setting up a Basic Chart

The core plt.scatter() function requires two
lists - one of x values, one of y values. Pass in
firstPrefs and secondPrefs.

import matplotlib.pyplot as plt

plt.scatter(firstPrefs, secondPrefs)

plt.show()

31

Modifying the Axes

If we want to make the chart look nicer, we
might want to add labels and set limits to
the axis lengths.

Searching the documentation shows us the
way again!

https://matplotlib.org/stable/api/_as_gen/
matplotlib.pyplot.xlabel.html

https://matplotlib.org/stable/api/_as_gen/
matplotlib.pyplot.xlim.html

plt.xlabel("#1 Favorite")

plt.ylabel("#2 Favorite")

plt.xlim(left=0, right=80)

plt.ylim(bottom=0, top=80)

32

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim

Finding Scatterplot Labels

Finally, to make the data easier to understand, we might want to add labels to the data
points.

Nothing immediately pops out as relevant in the scatter API, and there are no relevant
examples. Try searching the internet!

'add labels to scatterplot matplotlib' gives us:
https://stackoverflow.com/questions/14432557/matplotlib-scatter-plot-with-different-
text-at-each-data-point , which mentions the annotate function. Jackpot!

Look it up in the documentation:
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.annotate.html

33

https://stackoverflow.com/questions/14432557/matplotlib-scatter-plot-with-different-text-at-each-data-point
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.annotate.html

Adding Annotations

Iterate over all three lists to add the labels.

Now our graph is complete!

for i in range(len(flavors)):

pos = [firstPrefs[i],

secondPrefs[i]]

plt.annotate(flavors[i], pos)

34

Simulation Coding

35

Model, View, Controller

Recall that our simulation framework separates the simulation into three parts.

Model: represents the current state of the simulation (as a dictionary mapping key-
names to value-values and a set of rules).

View: draws the state of the world graphically

Controller: tells the model when to run rules based on time passing or events.

36

Example: Generating Bubbles

Let's program a basic simulation that makes bubbles appear in random locations as time
passes, or when the user clicks on the screen

At any given moment, the state of the simulation is the number of bubbles and where
they're located. That means the bubbles will need to be stored in the model.

Represent each bubble as an x-y location and a color. Maybe we can start with a single
bubble in the middle of the screen

def makeModel(data):

data["bubbles"] = [[200, 200, "blue"]]

37

View

To see the model, we'll need to implement the view. The canvas is constantly erased and
re-painted with the current state of the model so that it is always up-to-date.

def makeView(data, canvas):

for bubble in data["bubbles"]:

x = bubble[0]

y = bubble[1]

color = bubble[2]

radius = 20

canvas.create_oval(x - radius, y - radius,
x + radius, y + radius, fill=color)

38

Time-Based Simulation

We want bubbles to show up in random locations as time passes. To do
this, we'll use a function that is repeatedly called by the framework
every time a certain amount of time has passed.

By adding code to this function (runRules), we can make the
simulation smoothly update over time.

The function will need to change the model's dictionary for the effects
to stick over time.

39

Time Rules

Every time a certain amount of time passes, we want to add a single bubble to the screen.
To do this, add a single bubble to the model. Note that we must update the data variable
to save the changes.

def runRules(data):

x = random.randint(0, 400)

y = random.randint(0, 400)

color = random.choice(["red", "orange", "yellow", "green",

"blue", "purple"])

bubble = [x, y, color]

data["bubbles"].append(bubble)
40

Event-Based Simulation

We also want bubbles to show up when the user clicks on the screen.
To do this, we'll use a function that is called whenever the simulation
receives a mouse-click event from the computer system.

Again, this function will change the model's dictionary in order to
represent change in the system.

41

Event Rules

When the user clicks on the screen, add a circle centered at that location with no color.

def mousePressed(data, event):

bubble = [event.x, event.y, None]

data["bubbles"].append(bubble)

42

More Event Rules

Maybe we want to let the user select the color of the circle they'll add
by typing the first letter of the color. We can do with a different kind of
event and a different function that is called.

However, we'll need to store the chosen color in data to share it
between the two event methods.

43

Updated Event Rules

def makeModel(data):

data["bubbles"] = [[200, 200, "green"]]

data["color"] = None

def keyPressed(data, event):

colorMap = { "r" : "red", "o" : "orange", "y" : "yellow",

"g" : "green", "b" : "blue", "p" : "purple" }

if event.char in colorMap:

data["color"] = colorMap[event.char]

def mousePressed(data, event):

bubble = [event.x, event.y, data["color"]]

data["bubbles"].append(bubble)
44

Agenda

• Unit 4 Overview

• Reading and Reformatting Data

• Matplotlib Coding

• Simulation Coding

45

