
Artificial Intelligence
15-110 – Monday 04/26

Announcements

• Check6-1 revisions due Wednesday noon EST

• Check6-2 due Friday noon EST
• Can complete after today's lecture

• Testing Check6-2 and Hw6 code

2

Learning Goals

• Recognize how AIs attempt to achieve goals by using a perception,
reason, and action cycle

• Build game decision trees to represent the possible moves of a game

• Use the minimax algorithm to determine an AI's best next move in a
game

• Design potential heuristics that can support 'good-enough' search for
an AI

3

Perception, Reason, and Action

4

What is Artificial Intelligence?

Artificial Intelligence (AI) is a branch of computer science that studies
techniques which allow computers to do things that, when humans do them,
are considered evidence of intelligence.

However, it's extremely hard to build a machine with general intelligence-
that is, a machine that can do everything a human can do. We're still far
away from this goal, as it includes many difficult tasks (visual and auditory
perception, language understanding, reasoning, planning, and more).

Most modern AI applications are specialized; they do one specific task, and
they do it very well. We call an AI application trained for a specific task an
agent.

5

Examples of AI Agents

We've built AI agents that can
play games, run robots, and
win at Jeopardy.

AI is also used to translate
text, predict what you'll type,
and answer questions on
websites.

What do these agents have in
common? Each agent we build
has a specific goal, the thing it
is trying to do.

6

Perception, Reason, and Action

An AI agent attempts to reach its goal by cycling through three steps:
perceive information, reason about it, then act on it.

This is similar to how humans and animals work! We constantly take in
information from our senses, process it, and decide what to do
(consciously or unconsciously) based on that 'data'.

An agent's main task is to determine a series of actions that can be
taken to accomplish its goal.

7

Perception: What Data Can Be Gathered?

First, the agent needs to perceive information about the state of the
problem its solving.

This can range from data inputted directly by the user to contextual
information about other actions the user has taken. For example, an
autocomplete AI agent might use data both about what the user is currently
typing and about what they've typed before.

Agents that interact with the real world can perceive information through
sensors, pieces of hardware that collect data and send it to the agent.

8

Reason: What Should be Done Next?

Second, the AI agent needs to reason about the data it has collected, to decide
what should be done next to move closer to the goal.

Reasoning uses algorithms, as we've discussed this whole semester. The agent
often creates a model representation of the world based on the task it needs to
solve and the data its collected so far. It can then search through all the possible
actions it can take to inform its decision.

A general goal of reasoning is to make decisions quickly, so that tasks can be
accomplished efficiently. You don't want a self-driving car to take long to decide
whether or not to stop!

9

Action: Here's What to Do

Finally, the AI agent needs to act, to produce a change in the state of the
problem. All actions should lead the agent closer to its goal.

Actions don't need to reach the goal immediately, and often can't. As long as
some progress is made, the agent can continue cycling through perceiving,
reasoning, and acting until the goal is reached.

Agents that interface with the real world (robots) use actuators to make
changes. This can be complicated (moving a robot arm) or simple (turning up
the heat on the thermostat).

10

Example: IBM Watson

IBM's AI agent Watson was designed to play (and
win!) the game Jeopardy. Its goal was to answer
Jeopardy problems with a question. How did it
work?

Watson perceived the questions by receiving
them as text, then breaking them down into
keywords using natural language processing.

It used that information to search documents in
its database, looking for the most relevant
information. With that information, Watson used
reasoning to determine how confident it was
that the answer it found was correct.

If Watson decided to answer, it would act by
organizing the information into a sentence, then
pressing the buzzer with a robotic 'finger'.

11

Search Supports Artificial Intelligence

In Watson (and many other artificial intelligence applications), the key to
being able to perceive and act quickly lies in fast search algorithms.

Being able to search quickly makes it possible for an AI agent to look through
hundreds of thousands of possible actions to find which action will work
best. This is what makes it possible for Watson to find a correct answer so
quickly, or for a self-driving car to identify when it needs to stop
immediately.

We've discussed many data structures and algorithms to support search
already. We'll now introduce three final ideas used by AI agents to support
fast search- game trees, minimax, and heuristics.

12

Game Trees and Minimax

13

Game Trees Represent Possible World States

To search data about possible actions and results quickly, an AI agent
first needs to organize that data in a sensible way. Let's focus on a
simple example: a two-player game between an AI agent and a human.

A game tree is a tree where the nodes are game states and the edges
are actions made by the agent or the opposing player. Game trees let
the agent represent all the possible outcomes of a game.

For example, the game tree for Tic-Tac-Toe looks like this...

14

15

Full board here: https://xkcd.com/832/

https://xkcd.com/832/

Reading a Game Tree

The root of a game tree is the current state of the game. That can be the
start state (as in the previous example), or it can be a game state after some
moves have been made.

The leaves of the tree are the final states of the game, when the AI agent
wins, loses, or ties.

The edges between the root and the first set of children are the possible
moves the agent can make. Then the next set of edges (from the first level of
children to the second) are the moves the opponent can make. These
alternate all the way down the tree.

16

Game Trees are Big

How many possible outcomes are there in a game of Tic-Tac-Toe?

Let's assume that all nine positions are filled. That means the depth of the
tree is 10 (there are nine moves, so the root + 9 results of actions). There are
9 options for the first move, 8 for the second, 7 for the third, etc... that's 9!,
which is 362,880.

This number is a bit larger than the real set of possibilities (some games end
early), but it's a good approximation.

How can the agent choose the best set of moves to make out of all these
options?

17

Minimax Optimizes for Score

The minimax
algorithm can be used
to maximize the final
'score' of a game for
an AI agent.

In Tic-Tac-Toe, we'll
say that the score is 1
if the computer wins,
0 if there's a tie, and
-1 if the human wins.

18

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

Scoring Game States

How do we score the
intermediate states? Look
at the scores of the
state's children.

If the next move is made
by the agent, take the
maximum of the scores.

If it's made by the
opponent, take the
minimum.

Start from the leaves and
build up to the root.

19

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

1

AI max

User min

AI max

0 0 1

-1 -1 0

0

Activity: Apply Minimax

You do: given the
tree to the right,
apply minimax to
find the score of the
root node.

Note that the first
action is taken by the
AI agent.

20

O X

X X O

O

X O X

X X O

O

O X

X X O

O X

O X

X X O

O X

O O X

X X O

O X

O X

X X O

O O X

O X

X X O

O X O

O O X

X X O

O X

X O X

X X O

O O

X O X

X X O

O O

X O X

X X O

O O X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O O X

1 10 0 0 0

Minimax Algorithm

Need to use a general tree- "children" instead of "left" and "right"
def minimax(tree, isMyTurn):

if len(tree["children"]) == 0:
return score(tree["value"]) # base case: score of the leaf

else:
results = [] # recursive case: get scores of all children
for child in tree["children"]:

switch whose turn it will be for the children
results.append(minimax(child, not isMyTurn))

if isMyTurn == True:
return max(results) # my turn? maximize!

else:
return min(results) # opponent's turn? minimize!

def score(state):
??? # this depends on the agent's goal

21

Complexity of Minimax

How efficient is minimax? It needs to visit every node of the tree, so if
the tree has n nodes, it runs in O(n) time.

Complete game trees are huge; more complex games have much larger
trees. For example, in Chess there's an average of 35 possible next
moves per turn, with an average of 100 turns per game. That means
there are 35100 possible states to check – way too many!!

We'll need a way to constrain the size of the game tree. We'll do that
using heuristics.

22

Heuristics

23

Heuristics Provide Approximate Answers

A heuristic is a technique used by an algorithm to find a good-enough
solution to a problem. Heuristics are typically used because they're
faster than brute-force algorithms, and because they often achieve
good results.

Example: we can create a search heuristic for a graph search that ranks
possible next steps. The AI agent can then try the highest-ranked next
step instead of looking at all possible options and save a lot of time.

24

Heuristics Example: Travelling Salesperson

Think back to the Travelling Salesperson
problem. A heuristic for this problem would
be to rank paths based on their length. The
algorithm can always choose the next city to
visit by trying the shorter paths first.

Heuristics are fast, but they also have
drawbacks. If we use the Travelling
Salesperson heuristic, we lose optimality;
the path we find will be good, but it might
not be the best possible path.

25

Heuristics in Minimax

The main flaw in minimax is the size of
the game tree. We can address this by
having the computer move down a set
number of levels in the game tree, then
stop, even if it has not reached an end
state.

For states that are not leaves, use a
heuristic to score the state based on the
current setup of the game. Then the
agent can use minimax to find the next-
best move based on the heuristic scores.

If the heuristic is well-designed, its score
should approximate the real result and
minimax should still produce a good
result!

26

X O

X

O

X X O

X

O

X O

X X

O

X O

X X

O

X O

X

X O

X O

X

O X

O X O

X X

O

X O

X X O

O

X O

X X

O O

X O

X X

O O

O X O

X

X O

X O

O X

X O

X O

X O

X O

X O

X

X O O

-.33 0 0 0 0 0 .33 .33

Heuristic:
(number of possible X wins - number of possible O wins)

total number of non-tie results

stop here

...

Design Heuristics to Score Possibilities

In both of our previous examples, the heuristic let us score the possible
choices so that we could compare them directly.

This approach only works if we design the heuristic well. The score
that the algorithm assigns must be a good representation of the
probability that the state is the best choice to make.

How can we design heuristics well? Try to map all the information
contained in the state to a number- the larger, the better!

27

Example: AI for Connect Four

Consider the game Connect Four. Players alternate
in placing discs in the bottom-most open position
in one of the columns. The first player to get four in
a row- horizontally, vertically, or diagonally- wins.

If we developed an AI agent to play Connect Four, it
might create a game tree to decide its next move. It
will have 7 choices for which column to place a disc
in each turn (or fewer if one of the columns is full),
and there are 7*6 = 42 total moves. That's
approximately 742 different end states- too big! A
heuristic will help here.

28

Activity: Heuristic for Connect Four

Let's design a heuristic to assess a game state of Connect Four together.

A state where the AI has four in a row scores a 1. A state where the
user has four in a row scores a -1. A state where every slot has been
filled and no one won scores a 0.

You do: what other features should we assess?

29

Sidebar: Game AIs

Algorithms like minimax and the use
of heuristics have made it possible for
AI agents to beat world champions at
games like Chess, Go, and Poker.

Why did it take 19 years to get from
Chess to Go? Go has many more next
moves than Chess, so it needed more
advanced algorithms (including Monte
Carlo randomization and machine
learning!).

These AI agents will keep improving as
computers grow more powerful and
we design better algorithms.

30

DeepBlue beat chess grandmaster Garry Kasparov in 1997

AlphaGo beat 9-dan ranked Go champion Lee Sedol in 2016

Unit4 Review

Fill out the following poll to request topics to review in the next lecture:

https://forms.gle/NqRd9BQZ5CejD1Fi6

31

https://forms.gle/NqRd9BQZ5CejD1Fi6

Learning Goals

• Recognize how AIs attempt to achieve goals by using a perception, reason, and
action cycle

• Build game decision trees to represent the possible moves of a game

• Use the minimax algorithm to determine an AI's best next move in a game

• Design potential heuristics that can support 'good-enough' search for an AI

• Feedback: http://bit.ly/110-s21-feedback

32

http://bit.ly/110-s21-feedback

