
Simulation –
Experiments and Trials

15-110 – Friday 04/23



Announcements

• Check6-1 was due today
• Note that the revision deadline is next Wednesday 4/28 at noon EST

• Quiz5 has been graded
• Median: 93. Nice job!

2



Learning Goals

• Use Monte Carlo methods to estimate the answer to a question

• Organize animated simulations to observe how systems evolve over 
time
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Randomness
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Random Functions

Most simulations use randomness in some way; otherwise, every run of the simulation 
will produce the same result.

Recall the random library, which we learned about early in the semester. This module 
included several useful functions we can use:

random.random() # pick a random float between 0-1

random.randint(x, y) # pick a random number in a range

random.choice(lst) # chooses an element randomly

random.shuffle(lst) # destructively shuffles the list
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Computing Randomness

How is it possible for us to generate random numbers this way?

Randomness is difficult to define, either philosophically or 
mathematically. Here is a practical definition: given a truly random 
sequence, there is no gambling strategy possible that allows a winner 
in the long run.

But computers are deterministic – given an input, a function should 
always return the same output. Circuits should not behave differently 
at different points in time. So how does the random library work?
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True Randomness

To implement truly random behavior, we can't use an algorithm. 
Instead, we must gather data from physical phenomena that can't be 
predicted.

Common examples are atmospheric noise, radioactive decay, or 
thermal noise from a transistor.

This kind of data is impossible to predict, but it's also slow and 
expensive to measure.
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Pseudo-Randomness

Most programs instead use pseudo-random numbers for casual purposes. A 
pseudo-random number generator is an algorithm that produces numbers 
which look 'random enough'. Each number the algorithm generates acts as a 
starting place to generate the next one.

By calling the function repeatedly, the algorithm generates a sequence of 
numbers that appear to be random to the casual observer.

The number sequence generated by a pseudo-random number generator 
isn't truly random; if someone figures out the algorithm, they can predict the 
results. But it is random enough to use for casual purposes.
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Monte Carlo Methods
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Randomness in Simulation

Using randomness in a simulation means that the same simulation 
might have multiple different outcomes on the same input model. A 
single run of a simulation is not a good estimate of the true average 
outcome.

To find the truth in the randomness, we need to use probability!
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Law of Large Numbers

The Law of Large Numbers states that if you perform an experiment 
multiple times, the average of the results will approach the expected 
value as the number of trials grows.

This law works for simulation as well! We can calculate the expected 
value of an event by simulating it a large number of times.

We call programs that repeat simulations this way Monte Carlo 
methods, after the famous gambling district in the French Riviera.
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Monte Carlo Method Structure

If we put our simulation code in the function runTrial() and want to find 
the odds that a simulation 'succeeds', a Monte Carlo method might take the 
following format:

def getExpectedValue(numTrials):
count = 0
for trial in range(numTrials):

result = runTrial() # run a new simulation
if result == True:  # check the result

count = count + 1
return count / numTrials # return the probability
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Monte Carlo Example

Every year, SCS holds the Random Distance Race. The length of this race is determined by rolling 
two dice. What is the expected number of laps a runner will need to complete?

import random

def runTrial():

return random.randint(1, 6) + random.randint(1, 6)

def getExpectedValue(numTrials):

lapCount = 0

for trial in range(numTrials):

lapCount += runTrial()

return lapCount / numTrials
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Activity: Monte Carlo Methods

You do: what are the odds that a runner in the Random Distance Race 
will need to run 10 or more laps?

Write the code to run the trial. You can modify the code from the 
previous slide.
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Advanced Simulations
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Designing a Simulation

We now have all the individual parts of a simulation. All that remains is to 
combine these components to design a useful simulation. Let's do an 
advanced example by simulating a zombie outbreak.

Goal: we want to determine how many days it takes for the whole world to 
become zombies based on different zombie infection rates.

A zombie infection rate is how likely you are to become a zombie if you 
encounter a zombie. In other words, how effective are the zombies?

Warning: prepare for a lot of code!
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Zombie Outbreak Model

Let's simulate our world as a 2D grid. Zombies will move around, but humans 
will stay still (they're hiding).

Model: start with 20 humans and 5 zombies in random locations. Also start 
with an infection rate.

Rules: every second, move each zombie one square in a random direction on 
the grid. If a zombie is touching (bordering) a human, use the infection rate 
to determine if the human is turned into a zombie.

View: humans and zombies will both be squares. Humans are green 
(healthy), zombies are purple (infected).
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Programming the Model

def makeModel(data):
data["rate"] = 0.5 # 50% chance a human becomes infected on contact
data["size"] = 20 # grid is 20 x 20
# A 'creature' has a row, a column, and a species- human or zombie
data["creatures"] = [ ]
# Start with 20 humans and 5 zombies randomly placed
for human in range(20):

data["creatures"].append({ "row" : random.randint(0, data["size"]-1), 
"col" : random.randint(0, data["size"]-1),
"species" : "human" })

for zombie in range(5):
data["creatures"].append({ "row" : random.randint(0, data["size"]-1), 

"col" : random.randint(0, data["size"]-1), 
"species" : "zombie" })

18



Programming the View

def makeView(data, canvas):
# Draw an underlying grid
cellSize = 400 / data["size"] # 400 is the window size
for row in range(data["size"]):

for col in range(data["size"]):
canvas.create_rectangle(col*cellSize, row*cellSize, 

(col+1)*cellSize, (row+1)*cellSize)
# Then draw creatures on top
for creature in data["creatures"]:

row = creature["row"]
col = creature["col"]
if creature["species"] == "human":

color = "green"
else:

color = "purple"
canvas.create_rectangle(col*cellSize, row*cellSize, 

(col+1)*cellSize, (row+1)*cellSize, fill=color)
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Programming the Rules – Zombies Move

def runRules(data, call):
zombies = [] # To check if zombies are close to humans
for creature in data["creatures"]:

if creature["species"] == "zombie":
zombies.append(creature)
# Move in a random direction
move = random.choice([[-1, 0], [1, 0], [0, -1], [0, 1]])
creature["row"] += move[0]
creature["col"] += move[1]
# Make sure they don't move offscreen!
if not onscreen(creature, data["size"]):

creature["row"] -= move[0]
creature["col"] -= move[1]

# Need to be within both the width and the height
def onscreen(creature, size):

return 0 <= creature["row"] < size and 0 <= creature["col"] < size
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Programming the Rules – Infecting Humans

def runRules(data, call):
...

for creature in data["creatures"]:
if creature["species"] == "human": 

# Check if any zombie is touching this human
for zombie in zombies:

if bordering(creature["row"], creature["col"], 
zombie["row"],   zombie["col"]):

odds = random.random() # roll the dice, figuratively
if odds < data["rate"]:

creature["species"] = "zombie" # zombify!

# If in the same row and at most one apart, you're bordering
def bordering(row1, col1, row2, col2):

if row1 == row2 and abs(col1 - col2) <= 1:    return True
elif col1 == col2 and abs(row1 - row2) <= 1:    return True
else:    return False
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Programming the Rules – Detecting The End

def runRules(data, call):

if allZombies(data["creatures"]):

print(call) # number of 'days' that have passed
exit() # this exits the program

...

def allZombies(creatures):
for creature in creatures:

if creature["species"] == "human":

return False # any humans? not done yet

return True
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Using Simulations

Once we've programmed a robust simulation, we can change the starting 
state to see how it changes the simulation. This is especially useful when we 
want to predict certain things about the world.

We can check predictions more quickly by making timeRate smaller (calling 
the simulation more often).

For example: how long will it take for the whole world to become zombies...
• In our current code?
• If we start with more or fewer humans?
• If we start with a higher infection rate?
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Sidebar: Calculating Outcomes

If we want to explore the simulation, we can run it with the visualization on.

If we just want to find the average results, we can call the makeModel and 
runRules functions from a new function where the time loop becomes a 
while loop. Have that function return the number of days it takes to zombify 
all the humans.

When we run this function with getExpectedValueswe find the expected 
amount of time left for the human race. Monte Carlo solves the problem!
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Sidebar: Calculating Outcomes Code

def runTrial():
data = { }
makeModel(data)
daysPassed = 0
while not allZombies(data["creatures"]):

runRules(data, daysPassed)
daysPassed += 1

return daysPassed

def getExpectedValue(numTrials):
dayCount = 0
for trial in range(numTrials):

dayCount += runTrial()
return dayCount / numTrials

print(getExpectedValue(100))
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Learning Goals

• Use Monte Carlo methods to estimate the answer to a question

• Organize animated simulations to observe how systems evolve over 
time

• Feedback: http://bit.ly/110-s21-feedback
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