Data Analysis — Analyzing
and Visualizing

15-110 — Wednesday 04/21

* Quiz5 happening today!

* Check6-1 due Friday at noon EST
e Collab form: https://forms.gle/vJo5XUBHC1nthDy68

https://forms.gle/vJo5XUBHC1nthDy68

Last week we discussed the data analysis process and went over
several methods for reading, representing, and organizing data.

This time, we'll talk more about what we can do with that data once
we've processed it.

* Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

* Choose an appropriate visualization to create based on the number
of dimensions and data types

* Create simple matplotlib visualizations that show the state of a
dataset using APIs and examples

Analysis

Basic Data Analyses — Statistics Library

There are many basic analyses we can run on features in data to get a sense of what the
data means. You've learned about some of them already in math or statistics classes, such
as mean, median, and mode.

You can implement these in Python yourself, but you don't have to! There's already a
statistics library that does this for you.

import statistics
data = [41, 65, 64, 50, 45, 13, 29, 14, 7, 14]
statistics.mean(data) # 34.2

statistics.median(data) # 35.0
statistics.mode(data) # 14

Example: Analyzing Ice Cream Data

We've now cleaned the ice cream dataset from last week. Let's use it as a
running example of how to perform analyses.

Here's a bit of code from last time to load and represent the dataset:
import csv

def readData(filename):
f = open(filename, "r")
Semester, 3 orig, 3 cleaned, 3 categories

data = list(csv.reader(f))
return data

Example: Statistics of Ice Cream

We can start by measuring the
statistics of the ice cream
dataset.

The data is text, so we must
turn it into numbers before
performinﬁ analyses. Tr
counting the number of favorite
ice creams that fall into a
specific category for each
person and putting those counts
Into a list to analyze.

The count method is handy
here too if we narrow down the
data being counted first!

def getFlavorCounts(data, flavor):
counts = []
firstCol = data[@].index("#1 category")
for i in range(l, len(data)): # skip header

line = data[i]

only include categories

categories = line[firstCol:firstCol+3]
count = categories.count(flavor)
counts.append(count)

return counts

import statistics
d = readData("all-icecream.csv")
statistics.mean(getFlavorCounts(d, "chocolate"))

You'll also often want to calculate Conditional probability (the probability of
probabilities based on your data. something occurring given another factor)
is slightly more complicated. Create a

modified version of the list that contains

In general, the probability that a certain only those elements with that factor; then
data type occurs in a dataset is the count of you can use the same equation.

how often it occurred, divided by the total
number of data points.

newLst = []
Probability: for x in 1st:
lst.count(item) / len(lst) 1f meetsProperty(x):

newlLst.append(x)
newLst.count(item) / len(newlLst)

9

Example: Probabilities of Ice Cream

To calculate ice cream
probabilities, think back
to the code we wrote in
the machine learning
lecture.

Data analysis and
machine learning share a
lot in common!

Probability that a flavor is chosen
def getClassProb(data, flavor):
count = 0
for line in data:
if line[2] == flavor:
count += 1
return count / len(data)

Probability that 1st/2" favorite is X given that
37 favorite is C. Load data from CSV.
def getCondProb(data, priorFlavor, thirdFlavor, priorIndex):
count = 0
total = ©
for line in data:
if line[2] == thirdFlavor:
total += 1 # only count entries with third flavor
if line[priorIndex] == priorFlavor:
count += 1

return count / total "

There's plenty of other data analysis methods we could cover —
bucketing, detecting outliers, dealing with missing data — but what kind

of method you need will depend entirely on the context of the problem
you're solving.

Sometimes we may want to investigate a dataset more broadly. For

example, how many times does each individual flavor occur in any of a
person's preferences?

Example: Total Preferences

Create a dictionary mapping ice cream flavors to counts and iterate through the dataset to count all
the flavors. We could then use the find-best algorithm to find the most popular flavor.

def getIceCreamCounts(data):
iceCreamDict = { }
for i in range(l, len(data)): # skip header
firstCol = data[@].index("#1 cleaned") # only cleaned flavors
for j in range(firstCol, firstCol+3):
flavor = data[i][]]
if flavor not in iceCreamDict:
iceCreamDict[flavor] = ©
iceCreamDict[flavor] += 1
return iceCreamDict

12

You do: how could we adapt getIceCreamCounts to instead
calculate the probability that each flavor is among someone's
favorites?

What if we only wanted to get the probability that a flavor is a person's
#1 favorite?

Visualization

Data Visualization is the process of taking a set of data and
representing it in a visual format. Whenever you've made charts or

graphs in past math or science classes, you've visualized data!

Visualization is used for two primary purposes: exploration and
presentation.

In data exploration, charts created
from data can provide information
about that data beyond what is
found in simple analyses alone.

For example, the four graphs to
the right all have the same mean
and the same best-fit linear
regression. But they tell very
different stories.

T T T T T T T
4 6 8 10 12 14 16 18

T T T T T T T
4 6 8 10 12 14 16 18

X

/

g

T T T T T T T
4 6 8 10 12 14 16 18

T T T T T T T
4 6 8 10 12 14 16 18

X4

Data Presentation

In data presentation, you've already
found an interesting pattern in the

data and you need to make that o Prediction Accuracy 100k Prediction Accuracy
pattern easily visible to other people. ; +

In order to choose the best

visualization for the job, consider the o I
type of the data you're presenting i R

(categorical, ordinal, or numerical),
and how many dimensions of data

you need to visualize.
https://interactions.acm.org/archive/view/july-august-2018/the-good-the-bad-and-the-biased

17

A one-dimensional visualization only visualizes a single feature of the
dataset. For example:

"I want to know how many of each product type are in my data"
"I want to know the proportion of people who have cats in my data"

Charts for One-Dimensional Data

To visualize numerical data, use a
histogram.

To visualize ordinal data, use a bar
chart.

To visualize categorical data, use a
pie chart.

19

A two-dimensional visualization shows how two features in the dataset
relate to each other. For example:

"I want to know the cost of each product category that we have"
"I want to know the weight of the animals that people own, by pet species"
"I want to know how the size of the product affects the cost of shipping"

Charts for Two-Dimensional Data

To analyze numerical x numerical
data, use a scatter plot.

To analyze numerical x | T .
ordinal/categorical data, use a bar T T T T ;
chart for averages or a box-and-
whiskers plot for ranges.

It is difficult to analyze e
ordinal/categorical x -

ordinal/categorical data visually; use : E %

a table instead.

bbbbbb
Animal

21

A three-dimensional visualization tries to show the relationship between
three different features at the same time. For example:

"I want to know the cost and the development time by product category"

"I want to know the weight of the animals that people own and how much
they cost, by pet species”

"I want to know how the size of the product and the manufacturing location
affects the cost of shipping"

To analyze numerical x numerical |)
X numerical data, use a bubble :
plot to compare all three or a
scatter plot matrix to compare all
the pairs.

To analyze numerical X numerical
x ordinal/categorical data, use a 2
colored scatter plot.

23

You do: for each of the problem prompts, determine the number of
dimensions, then pick the best visualization to use based on the data

types.

* graph the % of people who have gotten COVID vs. the % of people
who have been vaccinated, separated by state

* graph the distribution of grades in a class

* graph the ages of pets at a shelter compared to the species of pets

Coding Visualizations with
Matplotlib

The matplotlib library can be used to generate interesting visualizations
in Python.

Unlike the previous libraries we've discussed, matplotlib is external —

you need to install it on your machine to run it. Use the pip command
to do this.

pip install matplotlib

26

Draw Visualizations on the Plot

Matplotlib visualizations can be broken down into
several components. We'll mainly care about one:
the plot (called plt). This is like Tkinter's canvas,
except that we'll draw visualizations on it instead
of shapes.

We can construct an (almost) empty plot with the
following code. Note that matplotlib comes with
built-in buttons that let you zoom, move data
around, and save images.

import matplotlib.pyplot as plt

plt.title("Empty")
plt.show()

@Figure1

1.0

Empty

0.8

0.6

0.4

0.2 A

0.0

0.0 0.2

#l € +Q/= B

0.4

0.6

0.8

1.0

27

Add Visualizations with Methods

There are lots of built-in methods that
let you construct different types of
visualizations. For example, to make a
scatterplot use
plt.scatter(xValues, yValues).

X =[2, 4, 5, 7, 7, 9]
y = [3, 5, 4, 6, 9, 7]
plt.scatter(x, y)
plt.show()

@Figure1

€3 +Q/=| B

28

Visualization Methods have Keyword Args

You can customize how a visualization looks by
adding keyword arguments. We used these in
Tkinter to optionally change a shape's color or
outline; in Matplotlib we can use them to add
labels, error bars, and more.

For example, we might want to create a bar chart
(with p1t.bar)with a unique color for each bar.
Usle the keyword argument color to set the
colors.

labels = ["A", "B", "C", "D", "E"]
yValues = [10, 40, 36, 46, 21]
colors = ["red", "yellow", "green",

"blue", "purple"]
plt.bar(labels, yValues, color=colors)
plt.show()

40 -

30 A

20 A

10 A

A B

& € #Q/= B

29

There are a ton of visualizations you can draw in Matplotlib, and

hundreds of ways to customize them. It isn't productive to try to
memorize all of them.

Instead, use the documentation! Matplotlib's website is very well
organized and has tons of great examples: https://matplotlib.org/

When you want to create a visualization, start by searching the APl and

the pre-built examples to find which methods might do what you
need.

https://matplotlib.org/

For example — how can we add x-axis
and y-axis labels to the bar chart?

Go to the plot API:
https://matplotlib.org/stable/api/ as ge

n/matplotlib.pyplot.html

Search 'label' and you'll soon find the
functions xlabel and ylabel. You can
click on the function to find more
information. The page describes what
the function does, what the required
arguments are, and what it returns.

Note that the keyword arguments will
be listed with detault values. That's how
we know they're optional.

xlabel(xlabel, fontdict=None, Labelpad=None, *, Loc=None, **kwargs) [sot

Set the label for the x-axis.

Parameters: xlabel : str

The label text.

labelpad : float, default: rcParams["axes.labelpad"] (default: 4.0)

Spacing in points from the axes bounding box including ticks and tick labels. If None, the previous value
is left as is.

loc : {'left', 'center’, 'right'}, default: rcParams["xaxis.labellocation"] (default: 'center')

The label position. This is a high-level alternative for passing parameters x and horizontalalignment.

If nothing obvious shows up, you can do a broader
internet search of 'matplotlib x-axis label', which
will often point you to the right place.

31

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel

Adding xlabel and ylabel

labels = ["A", "B", "C", "D", "E"]

yValues = [10, 40, 36, 46, 21]

colors = ["red", "yellow", "green",
"blue", "purple"]

plt.bar(labels, yValues, color=colors)

plt.xlabel("Product Categories")
plt.ylabel("# Purchased")

plt.show()

) Figure 1 - O

40 A

30 -

Purchased

20 A

10 A

0_

A B C D E
Product Categories

#l € +Q/= B

32

Example Example

Alternatively, you can browse the
Matplotlib examples page to find
visufallizations and features that might prove
useful:

https://matplotlib.org/stable/gallery/index.html

Perhaps we're interested in using grouped
bar charts to show the breakdown between
products purchased in different countries.
The example code provides a starting place
for which functions to use.

Try copying the example code into your
editor and running it. Then try changing
some things to see how the results are
affected.

Scores by group and gender

HE Men
Hl Women

33

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py

You might have noticed that the grouped bar chart example looks slightly different than the
code we've written so far. It sets

fig, ax = plt.subplots()
and calls methods on ax for the rest of the code.

This is an alternate way to write code in Matplotlib. Instead of drawing on the plot, break
the plot into one of more axes with plt.subplots, then draw directly on the axis.

This is mainly useful if you want to draw more than one visualization in a single window.
For the visualizations we'll do in this class, p1t will work fine.

34

https://matplotlib.org/stable/api/axis_api.html?highlight=axis#module-matplotlib.axis

Going from Example to Our Own Code

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

labels = ['Gl', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 34, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]

X = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()

rectsl = ax.bar(x - width/2, men_means,
width, label='Men')

rects2 = ax.bar(x + width/2, women_means,
width, label='Women')

labels =
yValuesA
yValuesB

xValuesA
xValuesB
w = 0.35
for i in

IIAII’ IIBII, I|Cll’ llD", I|Ell]
[10, 40, 36, 46, 21]
[20, 45, 35, 62, 32]

[]
[]

range(len(labels)):

[I | B

xValuesA.append(i - w / 2)
xValuesB.append(i + w / 2)

plt.bar(xValuesA, yValuesA, width=w)
plt.bar(xValuesB, yValuesB, width=w)

plt.xlabel("Product Categories")
plt.ylabel("# Purchased")

plt.show()

35

It can also be helpful to search online for other

projects that have used the same module, to find t k fl
examples of how to set it up. Many people have S aC Over ow
written helpful tutorials for this exact purpose.

Two standard resources for finding help are
StackOverflow, a site where people can ask questions
about code and get answers from other developers,
and GitHub, a site where people post open-source
projects for others to use and contribute to.

IMPORTANT: whenever you copy code from online,

make sure to cite it the same way you would cite a Py

paragraph of text in an essay. You can do this by GItH“b
putting a comment above the copied code that

includes a link to the URL you got the code from.

36

https://stackoverflow.com/
https://github.com/

Example: Visualizing Ice Cream

Let's use Matplotlib to visualize how popular the ice cream flavors
were. We're visualizing counts of categorical data, so we can use a pie
chart. Get the data by calling getIceCreamCounts from before.

data = readData("all-icecream.csv")
d = getIceCreamCounts(data)

Look up how to make a pie chart in the plot API:

https://matplotlib.org/stable/api/ as gen/matplotlib.pyplot.pie.htmli#
matplotlib.pyplot.pie

37

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie

Example: Reformat the Data

A pie chart requires a list x that holds the size of each portion. We can
optionally provide a list labels with the labels.

Iterate over the dictionary to break it down into portion values and labels.

flavors = []

portions = []

for flavor in d:
flavors.append(flavor)
portions.append(d[flavor])

38

Example: Create the Pie Chart

Now we can combine it all together into one pie
chart! However, we have a problem...

import matplotlib.pyplot as plt
import numpy as np

data = readData("all-icecream.csv")
d = getIceCreamCounts(data)

flavors = [

portions =[]

for flavor 1n d:
flavors.append(flavor)
portions.append(d[flavor])

1t.pie(portions, labels=flavors
D1t 2heslS :

@FIQUI'@ 1

saltgHecpERteErC

cookie dough

mint chocolate chip

matcha green tea

lemﬁam

chocolate

mango
coffee

vanilla

strawberry

cookies and cream

e e
black raspberry cm choostiiTT et

& €9 +a= B

39

Clean the

Data

There are too many one-off flavors to make a nice pie chart.

We can handle this by im osinﬁ a cutoff on the number of people who liked a flavor. Go back

through the data and add anyt

ing that doesn't meet the cutoff to an 'other' category.

def combineUncommon(d, cutoff):
newD = { "other" : 0 }
for flavor in d:
if d[flavor] >= cutoff:

newD
else:
newD
return newD

[flavor] = d[flavor]

["other"] += d[flavor]

40

Improved Pie Chart

import matplotlib.pyplot as plt ®rigue -
import numpy as np

data = readData("all-icecream.csv") Sk il
d = getIceCreamCounts(data) strawberry
d = combineUncommon(d, 15)

-Flavc,)r‘s = [vanilla

portions = []

for flavor 1n d:
flavors.append(flavor) oreo
portions.append(d[flavor])

other

chocolate chip
birthday cake
mint

rocky road
chocolate chip cookie ¢
) pistachio
cookie dough

coffee

plt.pie(portions, labels=flavors)
plt.show()

) : mango
mint chocolate chip

matcha green tea chocolate

‘l(.l-)l[.‘.lQlEH | x=0.635823 y=1.06466

41

* Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

* Choose an appropriate visualization to create based on the number of
dimensions and data types

* Create simple matplotlib visualizations that show the state of a dataset
using APls and examples

* Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

