Simulation —
Model, View, Controller

15-110 — Wednesday 04/14



* No class or OH Thursday — Sunday. Happy Carnival!

* HwW5 revision deadline Tuesday 4/20; Quiz5 Wednesday 4/21

 We're hiring 15-110 TAs for F21! If you'd like to interview, sign up
here:
* https://forms.gle/a3WbVMBzqt2nsASWA



https://forms.gle/a3WbVMBzqt2nsASWA

Data Analysis | Recap

Focus on reading files as:
e strings (plaintext)

* 2D lists (CSV)

e other structures (JSON)

The rest is taking skills
you've already learned
(string methods, destructive
list modification) and
applying them for a specific
purpose

mode = "TEXT"
f = open("icecream.csv", "r") # f is a file object

if mode == "TEXT":
# Can interpret text in f directly by reading the file
text = f.read()
print(text)
elif mode == "CSV":
# Can parse text in f as a spreadsheet (2D list)
# But only if the text is in a CSV format!
import csv
reader = csv.reader(f)
data = list(reader)
print(data)
elif mode == "JSON":
# Can parse text in f as a generic data structure
# But only if the text is in a JSON format!
import json
data = json.load(f)
print(data)



* Represent the state of a system in a model by identifying components
and rules

* Visualize a model using graphics

* Update a model over time based on rules

e Update a model after events (mouse-based and keyboard-based)
based on rules



Simulations and Models



A simulation is an automated
imitation of a real-world event.

By running simulations on
different starting inputs, and by
interacting with them while they
run, we can test how the event
will change under different
circumstances.




Examples of Simulations

Simulation is used across many different fields, including training
people, testing designs, and making predictions (like whether a flight
plan will work, or how a pandemic will evolve over time).

Free-for-all Attempted quarantine

adh

"just like the simulations™



Simulations share a lot in common with real world experiments. Major
differences include:

* Experiments run in real time; simulations can be sped up, slowed
down, or paused.

* Experiments can be expensive; simulations are fairly cheap.

* Experiments include all possible factors; simulations only include
factors we program in.



Example Simulations

You can explore simulations across a variety of fields on the site
NetlLogo.

e Ant colony movements
Flocking behavior

* Gravitational forces
Climate change

* Fire spreading

* Rumor mills



http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Chemistry%20&%20Physics/Mechanics/Unverified/N-Bodies.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Climate%20Change.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Fire.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Rumor%20Mill.nlogo

How do we program a simulation? You need to design a good model,
which will mimic the part of the real world you want to study. The
simulation represents how the system represented by the model
changes over time, or how it changes based on events.

Models are composed of two parts:

* The components of the system (information that describes the world at an
exact moment).

* The rules of the system (how the components should change as time
passes/events occur).

Components are like variables, and rules are like functions!



Problem: how will increasing the price of bread over the course of a
few months affect how many people buy bread?

Model Components: current price; delta change in price; overall
consumer count; distribution of consumer incomes

Model Rules: supply/demand relationship for bread; relationship
between income and max amount willing to pay



Problem: say we want to track how many birds are in a local area over
time.

You do: What are the components of this model? What are the rules?



Coding a Simulation



We'll implement simulations in this class graphically, like in NetLogo,
using Tkinter.

Our simulation code will be composed of three parts:

* A model which stores the core components in a shared data structure and
implements core rules in functions

* Time and event controllers which tell the model when to run rules that
update the components

* A graphical view which repeatedly displays the current state of the model



Model, View, Controller

15



We'll represent the model's components in code in a dictionary called data. The keys will
take the place of variable names and the values will be the actual component values.

For example, to store information about a circle that represents some part of the model,

we could set:

datal|
data[
datal[

S5

200
200
50

By storing all the components in one structure we can pass the same structure around to
all the functions we write using aliasing. This will let us update components in a rule
function, then display the updated data in a view function.

16



To display the whole model, we'll use Tkinter to draw graphics that represent the
components visually. By referring to component values in data in the view function, we
can make graphics that change alongside the model.

For example, if data = { "x" : 200, "y" : 200, "r" : 50 },we coulddraw a
circle with:

canvas.create oval(data["x"] - data["r"], data["y"] - data["r"],
data["x"] + data["r"], data["y"] + data["r"])

We'll erase and re-draw the graphics window every time the rules of the simulation run. If

we chahr?ge the components a little bit at a time, this makes the display appear to update
smoothly.

17



We can run the simulation rules in two ways: either over a period of time or
when events happen (or both!). We'll address the time controller first, then
the event controller later.

The time controller will create a time loop and call a function that
implements the model's rules within that time loop at equal time intervals.
By calling this function continuously, we can simulate time passing.

If the model's rules change the model's components in data, this will
simulate the model changing over time!

data["x"] = data["x"] + 5



We'll use a new simulation framework that you can find linked on the course
website to support our simulations. This framework manages the controllers
for you; you just need to focus on implementing the model and the view. To
do this, update three functions to build a simple simulation:

* makeModel (data) makes the original components. data is the model dictionary

* runRules(data, call) runsthe rules to update data. The integer call
represents the number of times runRules has been called

* makeView(data, canvas) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

19



The starter code we provide helps the simulation run smoothly. You don't need to
understand this code, but here's more details if you're interested.

The time controller in the function timelLoop calls our function runRules, then calls
makeView to update the view. It simulates a time loop with the built-in function
canvas.after. This function calls timelLoop again {I)ike recursion) but pauses before
making the call. That lets us recurse infinitely without freezing the window.

The function runSimulation(width, height, timeRate) sets up this time loop.
You can speed up/slow down the simulation by changing timeRate in the function call.

You can also change the window size by changing width and height in the function call
arguments.

20



Let's start with a simple simulation. Say we want to draw a circle and have
the color of the circle change over time.

The components should hold any values that might change. In this case,
that's the color of the circle. Set an initial component value in makeModel.

The rules should describe how the model changes over time. In this case, we
change the color in the shared dictionary with every call to runRules.

The view should draw a circle in the middle of the window and set its color
based on the color in the model. This is done in makeView.



Simple Example Code

def

def

def

makeModel (data):
# put variables in data here
data["color"] = "red"

makeView(data, canvas):

# (200, 200) is center point

# make sure to reference data for the parts that change!

canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

runRules(data, call):

import random

# Let's pick a color randomly!

newColor = random.choice(["red", "orange", "yellow",
"green", "blue", "purple"])

data["color"] = newColor # update data to change the model

22



You do: open the simulation starter code and copy in the functions
from the previous slide. Run the code to make sure it works, then

modify the code in the three functions so that the circle grows larger
as time passes.

Hint: you'll need to add one component to the model, the thing that is

changing. You should change that component in runRules and access
it while drawing the circle in makeView.



The second kind of controller is one that captures events.

An event represents a single user interaction with the computer system.
Events come in many forms: keyboard presses, mouse clicks, touchpad
gestures, button presses, touchscreen presses, etc...

When you take an action on your computer, a signal is sent from the
computer hardware to any programs that are currently running. That signal
has information about the type of the event (key press vs. mouse click), plus
any additional information that might be useful (which key was pressed).



The event controller runs an event loop to capture the signals that the computer
sends out, similar to the time loop discussed before. However, events occur
irregularly, unlike regularly-timed rules.

To implement this event loop, we'll have our simulation system constantly listen for
events. When an event occurs, the controller will catch it and send the event data
on to the correct rule function; then it will tell the view to update. This is done with
a special kind of Tkinter function called bind and is provided in the starter code.

With Tkinter we can listen for and bind functions to lots of different event types.
We'll care about just two: <Key >, a key press, and <Button-1>, a left mouse click.
There are lots of other Tkinter events we can implement if we want them:

https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events



https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events

To deal with Key and Mouse events, we'll introduce two new rule functions
to our simulation framework:

* keyPressed(data, event)
* mousePressed(data, event)

Each of these takes data (our components data structure) and event, an
event object that contains the information about the event.

These work like runRules(data, call) —we update data, then the
controller refreshes the view immediately afterwards. This lets us make
visible changes to the model.

26



In keyPressed, the event parameter contains two values we can access
with a . (like string or list methods):

* event.charis a string that holds the character pressed

* event.keysymis a string that holds the 'name’ of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in makeView:

def keyPressed(data, event):
data[ "text"] = event.char

27



Example Key Event

def makeModel (data):
data["color"] = "red"
data["tmp"] = "" # need to hold partial strings

def makeView(data, canvas):
canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

def keyPressed(data, event):
# build up a color string one char at a time until user presses Return

if event.keysym = "Return":
data[ "tmp"] += event.char
else:

# move the color into data["color"]
data["color"] = data["tmp"]
data["tmp"] — min

28



In mousePressed, the event parameter holds the pixel location
where the user clicked on the canvas.

e event.xisthe x location

* event.yisthey location

If we want to move a circle around the canvas to be centered wherever

you click, we'd need to store the center location and draw the circle
based on the model location in makeView:

def mousePressed(data, event):

data[ "cx"
data["cy"]

event.X
event.y

29



Example Mouse Event

def makeModel(data):
data["color"] = "red"

def makeView(data, canvas):
canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

def mousePressed(data, event):
import random
newColor = random.choice(["red", "orange", "yellow",
"green", "blue", "purple"])
# Check if the user clicked inside the circle
# Is the distance between the center and the click less than the radius?
if ((event.x - 200)**2 + (event.y - 200)**2)**Q.5 <= 50:
data[ "color"] = newColor

30



Throughout the process of building these simulations, we've structured
code based on the model, view, controller framework.

Model: manages the components and rules of the thing we're
simulating

View: displays the data in the model so that the user can look at it

Controller: manages time loops and events that provide changes to the
model



Represent the state of a system in a model by identifying components and rules

Visualize a model using graphics

Update a model over time based on rules

Update a model after events (mouse-based and keyboard-based) based on rules

Feedback: http://bit.ly/110-s21-feedback

32


http://bit.ly/110-s21-feedback

