Data Analysis —
Modeling and Parsing

15-110 - Monday 04/12

* HwW5 was due today
* revisions next week Tuesday, Quiz5 next week Wednesday

e Still have class on Wednesday

* No classes or office hours Thursday-Sunday. Enjoy Carnival!

* Hwb is special — expect a Piazza post explaining more soon!

e Read and write data from files

* Interpret data according to different protocols: plaintext, CSV, and
JSON

* Reformat data to find, add, remove, or reinterpret pre-existing data

Data Analysis

Data Analysis is the process of using computational or statistical
methods to gain insight about data.

Data Ana
In many ¢

and fraud

ysis is used widely by many organizations to answer questions
ifferent domains. It plays a role in everything from advertising
detection to airplane routing and political campaigns.

Data Analysis is also used widely in logistics, to determine how many
people and how much stock is needed and where they should go.

Data Analysis Process

The full process of data
analysis involves multiple Hypothesis Data Data
steps to acquire data, Generation Collection Cleaning
prepare it, analyze it, and
make decisions based on
the results.

Exploration
&
Visualization

We'll focus mainly on three Presentation Insig-h't & Statistics
steps: Data Cleaning, A & Dl\jcif.'on 0 8|‘ :
Exploration & Visualization, cHon RS HEVEE
and Statistics & Analysis

Before diving into data analysis, we have to ask a general question.
What does data look like?

Data varies greatly based on the context; every problem is unique.

Example: let's collect our own data! Fill out the following short survey:
http://bit.ly/110-ice-cream-s21

http://bit.ly/110-ice-cream-s21

Let's look at the results of our ice cream
data.

Most likely, there are some irregularities in
the data. Some flavors are capitalized; others
aren't. Some flavors might have typos. Some
people who don't like ice cream might have

put 'n/a', or 'none’, or 'I'm lactose intolerant'.

And some flavors might have multiple names
—'green tea' vs. 'matcha’.

Data Cleaning is the process of taking raw

data and smoothing out all these differences.

It can be partially automated (all flavors are
automatically made lowercase) but usually
requires some level of human intervention.

Flavor 1

1

2 green tea

3 Jasmine Milk Tea
4 Mint Chocolate Chip
5 Vanilla

6 Vanilla

7 Coffee!

8

9 grapenut
10 Chunky Monkey
11 Yam

Flavor 2

strawberry
Vietnamese Coffee
Rocky Road
Strawberry

Coffee

Mint chip

Peppermint stick
Mint Chocolate Chip
Vanilla

Flavor 3

cookies and cream

Thai Tea

Chocolate

Cookies and Cream
Pistachio

birthday cake BATTER (try tt

Chocolate
Coffee
Oreo

Reading Data from Files

Once data has been cleaned, we need to access that data in a Python
program. That means we need to read data from a file.

Recall that all the files on your computer are organized in directories,
or folders. The file structure in your computer is a tree — directories are
the inner nodes (recursively nested) and files are the leaves.

When you're working with files, always make sure you know which
sequence of folders your file is located in. A sequence of folders from
the top-level of the computer to a specific file is called a filepath.

To interact with a file in Python we'll need to access its contents. We
can do this by using the built-in function open(filepath). This will
create a File object which we can read from or write to.

f = open("sample.txt")

open() can either take a full filepath or a relative path (relative from
the location of the python file). It's usually easiest to put the file you
want to read/write in the same directory as the python file so you can
simply refer to the filename directly.

Reading and Writing from Files

When we open a file we need to specify whether we plan to read from or write to the file. This
will change the mode we use to open the file.

f = open("sample.txt", "r") # read mode
lines = f.readlines() # reads the lines of a file as a list of strings
or

text = f.read() # reads the whole file as a single string

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once
you're done with it.

f.close()

12

WARNING: when you write to files in Python backups are not
preserved. If you overwrite a file, the previous contents are gone
forever. Be careful when writing to files.

WARNING: if you have multiple Python files open in Pyzo and you try
to open a file from a relative path, Pyzo might get confused. To be safe,
when working with files, only have one file open in Pyzo at a time. And
make sure to 'Run File as Script' when working with files.

You do: Download the file
chat.txt from the schedule page
and move it to the same folder as a
python script. Try using open and
read to open the file and read the
contents, then print the contents.

If Python says a filename doesn't
exist when you're sure that it does,
go to office hours to get help; there's
a few common problems that can
OCCur.

Common file reading issues:

* make sure the file is actually in the
same directory as your python
script

* make sure the filename you've
entered is actually the filename
(including the filetype at the end!)

* make sure you're using Run File as
Script (execute usually won't work)

* make sure only one file is open in
Pyzo

Sidebar: os library for advanced files

The os library lets you directly interact with your computer's operating system. You
can use this library to further modify files on your computer. The following
functions are especially useful:

os.listdir(path) # returns a list of files in the directory

os.path.exists(path) # returns True if the given path exists
os.rename(a, b) # changes file a's name to b
os.remove(path) # deletes the file.

15

As we start working with file text, we'll need to account for characters
that are hard to represent in string values. These include the enter
character (newline) and the tab character (tab). We can't type these
directly into a string, so we'll use a shorthand instead:

"ABC\nDEF"
"ABC\tDEF"

The \ character is a special character that indicates an escape

sequence. It is modified by the letter that follows it. These two symbols
are treated as a single character by the interpreter.

Data Formats

Once you've read data from a file you need to determine what the
structure of that data is. That will inform how you store the data in

Python.

We'll discuss three formats here: CSV, JSON, and plaintext. Many other
formats exist!

First, Comma-Separated Values (CSV)
files store data in two dimensions.
They're effectively spreadsheets.

The data we collected on ice cream was
downloaded as a CSV. If we openiitin a
plain text editor, you can see that values
are separated by commas.

These files don't always have to use
commas as separators, but they do
need a delimiter to separate values
(maybe spaces or tabs).

,Flavor 1,Flavor 2,Flavor 3

133}

2,green tea,strawberry,cookies and cream
3,Jasmine Milk Tea,Vietnamese Coffee,Thai Tea
4 ,Mint Chocolate Chip,Rocky Road,Chocolate
5,Vanilla, Strawberry,Cookies and Cream
6,Vanilla,Coffee,Pistachio

7,Coffee! ,Mint chip,birthday cake BATTER (try t
8”}

9,grapenut,Peppermint stick,Chocolate

1@, Chunky Monkey,Mint Chocolate Chip,Coffee
11,Yam,Vanilla,Oreo

12,cherry,Matcha,Chocolate
13,Strawberry,Vanilla,chocolate chip

14,dulce de leche,Vanilla,Coffee
15,Vanilla,Banana, Strawberry

16,Cookie Dough,Cookies and Cream,Triple Fudge
17,Vanilla,Mocha, Strawberry

18,Butter Pecan,Cotton Candy,Mango
19,Turtle.Cookies and Cream.Vanilla

Reading CSV Data into Python

We could open a CSV file as plaintext and
parse the file as we read it. Or we could use
the csv library to make reading the file
easier.

This library creates a Reader object out of a
File object. When each line is read from a
Reader object, the line is automatically
parsed into a 1D list by separating the
values based on the delimiter.

We can pass optional values into the
csv.reader call to set the delimiter.

import csv

f = open("icecream.csv",
reader = csv.reader(f)

data = []
for row in reader:
data.append(row)

print(data)

f.close()

r

)

20

Writing CSV Data to a File

What if we've processed data in a 2D list
and want to save it as a CSV file?

Create a CSV Writer object based on a file.

You can use it to write one row at a time
usingwriter.writerow(row).

Again, the delimiter can be set to values
other than a comma by updating the
optional parameters.

import csv

data = [["chocolate", "mint chocolate",
"peppermint"”],
["vanilla", "matcha", "coffee"],
["strawberry", "mango", "cherry"]]
f = open("results.csv", "w", newline="")
writer = csv.writer(f)

for row in data:
writer.writerow(row)

f.close()

21

Second, JavaScript Object
Notation (JSON) files store data
that is nested, like trees. They are
commonly used to store
information that is organized in
some structured way.

JSON files can store data types
including Booleans, numbers,
strings, lists, dictionaries, and any
combination of the above.

"vanilla" : 10,
"chocolate” : {
"chocolate" : 15,
"chocolate chip" : 7,
"mint chocolate chip" : 5
}s
"other" : ["strawberry", "matcha", "coffee"]

The easiest way to read a JSON file into
Python is to use the JSON library.

This time, we'll use json.load(file).
This function reads text from a file and
produces a piece of data that matches the
type of the outermost data in the text
(usually a list or dictionary).

In our example from the last slide, the
function would produce a dictionary
mapping strings to integers, dictionaries,
and lists.

import json

open("icecream.json", "r")
json.load(f)

print(j)

f.close()

23

Writing JSON Data to a File

What if we want to store JSON data import json
in a file for later use?

d = { "vanilla" : 10,

Again, use the JSON library. The "chocolate” : 27,
json.dump(value, file) "other" : ["strawberry", "matcha", "coffee"]
method will take a JSON- }

compatible value and write it to a
file in JSON format.

f = open("results.json", "w")
json.dump(d, f)
f.close()

24

Finally, a lot of the data we work with might not fit nicely into either a
CSV or JSON format. If we can read this data in a simple text editor, we
call this plaintext data.

To work with plaintext, you need to identify what kinds of patterns
exist in the data and use that information to structure it. The patterns
you identify may depend on which question you're trying to answer.

We'll talk about this more in the next section.

You do: which data format would you use to store Python data
organized in a...

... tree?

... 2D list?

... string?

If you're working with data that includes timestamps, the datetime module
is useful for parsing information out of the timestamp.

There are functions that let you get the day, month, hour, minute, or
whatever else you might want out of a timestamp. You can also convert
timestamps between different formats (like "mm/dd/yy" to

"dd-mm-yyyy").

Use datetime.datetime.now() to get the timestamp at the moment the
line of code runs. This is useful when you're generating log files.

27

Working with Data

When parsing data in a plaintext file, start by identifying the pattern;
then ask yourself a few questions about that pattern.

* Does the pattern occur across lines, or some other delimiter?
* Where is the information in a single line/section?
* What comes before or after the information you want?

Once you've identified where the information is located, use string slicing and
string methods to separate out the information you need.

Slicing (s[start:end:step]) can be used to remove parts of the data that are
unnecessary.

The split method (s.split("."))can be used to break up data that is separated
by a known delimiter.

The find method (s.find(":")) can be used to find the location of the beginning
or egddoctl a section. That can be combined with slicing or splitting to isolate the
needed data.

The strip method (s.strip())can be used to remove whitespace (spaces, tabs,
and newlines) from the front and back of a string. This is useful for isolating the
core text of a string.

chat.txtisa 14:54:28 , From Malika : Could I use recursion
dataset based on a for AuthorMap:

chat log from a 14:56:03 From Ed : yep

previous class. (All 15:00:22 From Arman : what is str.digits?
student names have 15:01:21 From Margaret Reid-Miller to
been modified to Kelly Rivers(Privately) : We only hear the music
preserve student when you speak

15:08:31 From Ed : how would you know if it

prlvacy)' were O(n**.5)?

How could we get the
names of everyone
who participated in
the chat? What's the
pattern?

Example: Parsing a Chat Log

f = open("chat.txt", "r")

Each message occurs on an text = f.read()
individual line; split the text based f.close()
on newlines ("\n").

people = []

for line in text.split("\n"):
"From" occurs before each name start = line.find("From") + \
and " : " occurs afterwards. len("From™)
Find those indices and slice based line = line[start:]
on them. end = line.find(" : ")

line = line[:end]

line = line.strip()

Use strip to clear extra ~ people.append(line)
whitespace. print(people)

32

Example: Parsing a Chat Log

A few lines don't match the " line = line[:end]

pattern; account for those too. if "(Direct Message)" in line:

end = line.find("to")
line = line[:end]
line = line.strip()
If statements are useful when
something breaks a pattern.

33

Update Values with Index Assignment

Once we've parsed our data into an # Assume data is a 2D list parsed from the file
appropriate format, we may need to ~ for row in "?”ge(le”(data))‘

change the structure to achieve the for ;O;aiz ;i;ﬁiiigﬁjﬁ&gﬁfiii

ané'llyS'S we.want.. Let's as?‘ume that data[row][col] = data[row][col].lower()
we're working with a 2D list produced ;¢ (gata)

from the ice cream data.

To update a value, access the
appropriate column in each row and
change it. For example, you might
want to convert a string to a different
type via type-casting.

34

Remove Values with pop()

To remove a value, pop an element of # Assume data 1s a 2D list parsed from the file

each row based on the column that
needs to be removed.

for row in range(len(data)):
data[row].pop(@) # remove the ID
for col in range(len(data[row])):
Make all flavors lowercase
data[row][col] = data[row][col].lower()
print(data)

35

Add Values with append()/insert()

To add a value, append or insert a
new value into each row, potentially
based on the pre-existing values.

Assume data is a 2D list parsed from the file
for row in range(len(data)):
data[row].pop(@) # remove the ID
chocCount = @ # count number of chocolate
for col in range(len(data[row])):
Make all flavors lowercase
data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:
chocCount += 1
track chocolate count
data[row].append(chocCount)
print(data)

36

Headers are Special Cases

Make sure to update the header # Assume data is a 2D 1list parsed from the file

according to a separate rule! header = data[@]
header.pop(Q) # remove the ID

header.append("# chocolate")
for row in range(1, len(data)):
data[row].pop(@) # remove the ID
chocCount = @ # count number of chocolate
for col in range(len(data[row])):
Make all flavors lowercase
data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:
chocCount += 1
track chocolate count
data[row].append(chocCount)
print(data)

37

e Read and write data from files

* Interpret data according to different protocols: plaintext, CSV, and
JSON

* Reformat data to find, add, remove, or reinterpret pre-existing data

* Feedback: http://bit.ly/110-s21-feedback

38

http://bit.ly/110-s21-feedback

