External Modules

15-110 — Bonus Slides

This set of bonus slides describes an array of modules that other
Python programmers (and CMU students!) find useful.

You are not responsible for understanding any of these modules.

Think of this more as a resource to consult if you decide you want to
use any of them later on.

Math: NumPy Images: PIL
Science: SciPy 3D Graphics: Panda3D
Data Analysis: pandas, Matplotlib

Webscraping: Beautiful Soup Audio: PyAudio
Websites: Django

Machine Learning: scikit-learn Game Design: Pygame
Natural Language Processing: nltk

SciPy is a group of modules that support advanced mathematical and
scientific operations. It can handle large calculations that might take the
default Python operations too long to compute. We'll use this a little bit in
the Data Analysis lectures.

The group includes NumPy (which focuses on math), SciPy (science), pandas
(data analysis), and Matplotlib (plotting of charts and graphs). These can be

used separately or as a group. Each need to be installed separately, but can
be installed directly with pip install name

Website: https://www.scipy.org/

https://www.scipy.org/

SciPy Collection Example

We'll show how to use Matplotlib in the Data Analysis Il lecture. To learn about pandas,
watch the following video: http://www.cs.cmu.edu/~15110-s20/hw/hw6 pandas.mp4

Here's a brief demo of running a t-test with Numpy and Scipy:

Run a T-test on two random sets of data

import numpy, scipy

from scipy import stats

valsl = numpy.random.random(1000) # generates 100 random numbers
vals2 = numpy.random.random(1000)

result = stats.ttest ind(valsl, vals2)

print(result.pvalue)

http://www.cs.cmu.edu/~15110-s20/hw/hw6_pandas.mp4

Beautiful Soup

Beautiful Soup is a module that supports webscraping and HTML
parsing. This is useful if you want to gather data from online for use in
an application.

Website: https://www.crummy.com/software/BeautifulSoup/

Install:
pip install beautifulsoup4

https://www.crummy.com/software/BeautifulSoup/

Parse HIML as Tags

HTML organizes content on a page using tags, like this:

<tag attribute="value">
<subtag> Some content for the subtag </subtag>

</tag>

To parse a website, you need to look for a certain type of tag in the file.

Beautiful Soup Example

import requests
from bs4 import BeautifulSoup

page = requests.get("https://www.cs.cmu.edu/~110/schedule.html")
soup = BeautifulSoup(page.content, 'html.parser')
for link in soup.find all('a'):
url = 1link["href"]
if "slides/" in url and ".pdf" in url:
print(link["href"])

Django is a module that lets you build interactive websites using
Python. This involves setting up a frontend (the part of a website that
the user sees while browsing) and a backend (the part of a website that
processes requests and does the actual work).

Website: https://www.djangoproject.com/

Install:
pip install django

https://www.djangoproject.com/

scikit-1learnis a module that supports a large set of machine
learning algorithms in Python. If you want to dabble in machine
learning or artificial intelligence, this is a good place to start. Note that

you'll still need to provide a starting dataset to get any algorithm to
work.

Website: https://scikit-learn.org/stable/

Install:
pip install scikit-learn

10

https://scikit-learn.org/stable/

scikit-learn Example

Learn a decision tree from a random set of two-number data points
that predict a third number

import numpy

import sklearn

from sklearn import tree

import matplotlib.pyplot as plt

trainingX = []
for i in range(1000):

trainingX.append(numpy.random.random(2)) # generates 1000 two-element random pairs
training¥ = numpy.random.random(1000)

regr = tree.DecisionTreeRegressor(max_depth=2)
regr.fit(trainingX, trainingy)

plt.figure()
tree.plot_tree(regr)
plt.show()

11

nltk, the Natural Language Toolkit, assists with natural language
processing for machine learning purposes. This is useful whenever
you're working with a corpus of written texts.

Website: https://www.nltk.org/

Install:
pip install nltk

12

https://www.nltk.org/

nltk Example

Identify the nouns in a document
import nltk
document = "insert example text here”
result = []
words = nltk.word tokenize(document)
tags = nltk.pos_tag(words)
for tup in tags:

[word, type] = tup

if (word.lower() not in result) and (type ==

result.append(word. lower())

result.sort()
print(result)

'NN' or type "NNS ") :

PIL is a lightweight and easy-to-install module that lets tkinter interact
with images other than .gif and .ppm files. It also includes functions that
support basic image manipulation.

Website: http://www.pythonware.com/products/pil/

Since the main PIL installation is not maintained, most programmers use an
offshoot called Pillow instead.

Website: https://pypi.org/project/Pillow/2.2.1/

Install:
pip install pillow

14

http://www.pythonware.com/products/pil/
https://pypi.org/project/Pillow/2.2.1/

Panda3D is a module that supports 3D rendering and animation. Like
pyaudio, it can be very complicated to install and use, but it is still
much easier than trying to create 3D animation in a 2D system.

Website: https://www.panda3d.org/manual/

Install:
pip install Panda3D

15

https://www.panda3d.org/manual/

PyAudio makes it possible to analyze, create, and play audio files. This
module requires some complex pre-existing software, including the language
C++; if you get an error message while installing, read it carefully to see how
to make the installation work.

Website: https://people.csail.mit.edu/hubert/pyaudio/

Install:
pip install pyaudio

Note that there are many other audio modules available as well; you can find
a list: https://wiki.python.org/moin/Audio

16

https://people.csail.mit.edu/hubert/pyaudio/
https://wiki.python.org/moin/Audio

PyAudio Example

import pyaudio, math
Make the sound data
bitrate, freq = 64000, 130.815 # C3 frequency
dataFrames = [""] * 5
for octave in range(5):

mult = 2*math.pi*(freg*(octave+1))

for frame in range(bitrate):

dataFrames[octave] += chr(int(math.sin(mult * frame / bitrate)*127+128))

Play the sounds!
p = pyaudio.PyAudio()
stream = p.open(format=32, channels = 1, rate = bitrate, output = True)
for frame in dataFrames:

stream.write(frame)
Close the stream
stream.stop_stream()
stream.close()
p.terminate()

17

Pygame is, like tkinter, a library that lets you make graphical
applications. However, Pygame is specifically designed to create games.
It has better support for sprites and collision detection than tkinter.

Website: https://www.pygame.org/news

Install:
pip 1nstall pygame

18

https://www.pygame.org/news

