Managing Large Code Projects

15-110 — Friday 04/09

Announcements

* Quiz4 grades released
 Median of 95 — excellent work!

0 10 20 30 40 50

MINIMUM MEDIAN MAXIMUM

46.5 95.0 100.0

* Hw5 due on Monday

60

MEAN

93.43

70

STD DEV

71.36

* Use the input command and try/except structures to handle direct
user input in code

* Implement and use helper functions in code to break up large
problems into solvable subtasks

* Install external modules with the pip command

* Read documentation to learn how to use a new module

Our next unit focuses on how computer science can be used to benefit other
domains.

We'll investigate three different applications of computer science: data
analysis, simulation, and machine learning.

These three applications share a core idea in common: all three organize
data to help people answer questions.

Before we get into these topics, we need to learn a bit about how to
approach coding large projects instead of individual functions.

User Input

When you use a program (like your
internet browser, or Pyzo), you're
communicating with the computer. You
give the computer input on what you
want to do, and it produces output
based on your requests.

When we write programs, we can
capture input directly from the user.
When combined with output (printed
strings), we can make programs that a
interact with a user!

input

output

Up until now, we've written programs that get their input solely from the
function arguments we provide. Alternatively, we can write programs that
ask the user to enter information while the program is running.

The built-in function input(msg) displays a message in the interpreter, lets
the user type a response in the interpreter, then returns the response as a
string when the user presses enter.

name = input("Enter your name: ")
print("Hello, " + name + "!")

input () will always return a string. If we want to use a user's
response as a number, we need to use type-casting to change it.

age = int(input("Enter your age: "))
print("You'll be", age + 1, "next year")

Note: users sometimes enter unexpected whitespace at the beginning
or end of a response. The built-in function s.strip() may prove
useful! It removes extra whitespace from the beginning/end of a string.

What happens if we ask the user to enter a number and try to convert
their text to a number, but they enter a non-number instead?

The code will throw a ValueError when it tries to convert the text to
an int. This is not great, because users get frustrated if the program
crashes each time they make a mistake.

In order to make a program robust against human errors, we can use a
try-except control structure to recover from such errors.

A Try-Except statement looks like this:

try:
<try-block>
except:

<what to do if the try code throws an error>

This works a bit like an if-else statement. Go to the try block first. If the code in the
try block runs correctly, the except block is skipped. Alternatively, if Python

encounters a runtime error in the try block, it immediately exits that block and
jumps to the beginning of the except block.

Example: Inputting a Number

Let's try our age-entering program again, this time with error handling.

try:
age = int(input("Enter your age:"))
print("You'll be", age + 1, "next year")
except:
print("That's not a real age!")

Note that the first print statement does not run if the user enters a non-
number into the input.

11

You do: write a short snippet of code that asks the user to enter two
numbers (with two separate input () calls), then prints the result of
multiplying those two numbers. If at least one of the inputs isn't a
number, print an error message using an except block.

Test your code by trying good inputs (two inputs) and bad inputs of
different kinds.

Sometimes you might need to try several times to get the user to input
a valid option into the program.

When you need to get a real input from a user, use a loop to continue
asking them for input until they get it right.

What's the loop control variable? You could use the variable you're
setting based on the user's entry. You could also use while True,
then break when you get the right input.

Example: Entering y/n

For example, let's write a simple program that requires the user to respond with
eithery (yes$ or n (no).

answer =

while True:
answer = input("Do you like ice cream? [y/n]:")

if answer == "y" or answer == "n
break

else:
print("Seriously, answer the question.")

if answer == "y":
print("Me too!")

else:
print("Lactose intolerance sucks : (")

14

Helper Functions

In Hw5 and Hw6 (and in projects you mi%ht work on outside of 15-110), the
code you write will be bigger than a single function. You'll often need to
write many functions that work together to solve a larger problem.

We call a function that solves part of a larger problem this way a helper
function. By breaking up a large problem into multiple smaller problems and
solving those problems with helper functions, we can make complicated
tasks more approachable.

We've used helper functions in class before- to calculate how much to pay
for a meal (helper function calculated tip), in selection sort (to swap two
items in a list), and in merge sort (to merge two lists).

In HW5 and Hw6 we've broken a problem down into helper functions
for you. But if you work on a separate project, you'll need to do this
process on your own.

Try to identify subtasks that are repeated or are separate from the
main goal; break down the problem into smaller parts. Have one
subtask per function to keep things simple.

Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

Let's organize our tic-tac-toe game based on four core subtasks:

makeNewBoard (), which constructs and returns the starter board
showBoard(board), which displays a given board

takeTurn(board, player), which lets the given player make a move on the board

isGameOver(board), which returns True or False based on whether or not the game
is over

We'll only go over how each function works briefly. The most important thing right now is
how we use the helper functions in the main code.

19

makeNewBoard and showBoanrd

makeNewBoard and showBoard are # Construct the tic-tac-toe board
simple; we can program these just using ~ def makeNewBoard():

\ board = []
concepts we've already learned. for row in range(3):

Add a new row to board
board.append([".", ".", "."])

The board will be a 3x3 2D list with " . " return board
for empty spaces, " X" for player X, and
"0" for player O. # Print the board as a 3x3 grid

def showBoard(board):
for row in range(3):

, . . line = ""
We'll call these functions in a main for col in range(3):

function that will actually run the game. line += board[row][col]
print(line)

20

Ask the user to input where they want

to go next with row,col position
ta keTu N def takeTurn(board, player):
while True:
try:
takeTurn uses the concepts we just row = int(input("Enter a row for " + \
went over in the User Input section! player + ":"))
col = int(input("Enter a col for " + \
player + ":"))

Have the user input the row and col
they want to fill in. Check to make sure
the row and col are numbers with
try/except and ensure that they
show a valid and unfilled space with if
statements.

Keep looping until a valid location is
chosen. Update the board at that spot,
then return the updated board.

Make sure its in the grid!
if @ <= row < 3 and @ <= col < 3:
if board[row][col] == ".":
board[row][col] = player
stop looping when move 1is made

break
else:
print("That space isn't open!")
else:
print("Not a valid spacel™)
except:

print("That's not a number!™)

return board -

1sGameOver needs more helper functions

Generate all horizontal lines
def horizlLines(board):

isGameOver is a bit more complicated. lines = [] o

: : for row in range(3):
There are multlple scenarios where t.he lines. append (board[row][0] + board[row][1] + \
game can end- if a player gets three in a board[row] [2])

row horizontally, or vertically, or return lines

diagonally. The game can also end if the # Generate all vertical lines

- £ def vertLines(board):
board is filled. lines = []

for col in range(3):
lines.append(board[@][col] + board[1][col] + \

: board[2][col

Use more helper functions to break up eturn Lines T Cordi2llcell)
the work into parts! Generate strings . .

. . # Generate both diagonal lines
holding all rows/columns/diagonals def diaglines(board):
with horizLines, vertlLines, and leftDown = anrg%g“g% + board[1][1] + \

. . Oar

d1agL1nes. rightDown = board[@][2] + board[1][1] + \

board[2][0]

return [leftDown, rightDown] 99

1sGameOver and 1sFull

Check if the board has no empty spots

. def isFull(board):
We can also make a separate function to for row in range(3):

check whether the board is full. for col in range(3):
if board[row][col] == ".":
return False

Now all we need to do in isGameOver is return True

call our functions. First, check whether # True if game is over, False is not

the board is full. If it isn't, generate all def isGameOver(board):
if isFull(board):

’Elhe Ilrles a'r'1d chfck whether. any hold eturn True
XXX" or "O00". Much easier! allLines = horizLines(board) + \
vertLines(board) + \
diaglLines(board)
for line in alllines:

Note .that when we call the.helper if line = "XXX" or line = "000":

functions, we have to pass in the needed return True

data as arguments to the call. For now, return False

that's just the board. 23

Put it All Together

Now we can finally write the main function!

Start by calling makeNewBoard to generate the
board. Display the starting state by calling
showBoanrd.

Use a loop to iterate over every turn in the
game. Alternate a Boolean variable to decide
whether it's X's or O's turn, and call takeTurn
on the board and the appropriate player to
decide which move to make. Call showBoard
again each time to show the updated board.

Keep looping until the game is over by checking
isGameOver in the loop condition.

def playGame():
print("Let's play tic-tac-toe!")
board = makeNewBoard()
showBoard()
playerlTurn = True
while not isGameOver (board):
if playerlTurn:
board = takeTurn(board, "X")
else:
board = takeTurn(board, "0")
showBoard()
playerlTurn = not playerlTurn
print("Goodbye!")

24

Python Modules

The Python programming language comes with a large set of built-in
functions that cover a range of different purposes. However, it would

take too long to load all these functions every time we want to run a
program.

Python organizes its different functions into modules. When you run
Python, it loads only a small set of functions from the built-in module.
To use any other functions, you must import them.

Built-in Modules

We've already used a few core modules for homework assignments -
mainly math and tkinter.

For a full list of python libraries, look here:
https://docs.python.org/3/library/index.html

27

https://docs.python.org/3/library/index.html

There are many other libraries that have been built by developers
outside of the core Python team to add additional functionality to the
language. These modules don't come as part of the Python language,
but can be added in. We call these external modules.

In order to use an external module, you must first install it on your
machine. To install, you'll need to download the files from the internet
to your computer, then integrate them with the main Python library so
that the language knows where the module is located.

One of the main strengths of Python as a language is that there are thousands of
external modules available, which means that you can start many projects based
on work others have done instead of starting from scratch.

You can find a list of popular modules here: wiki.python.org/moin/UsefulModules

And a more complete list of pip-installable modules here: pypi.org

There are bonus slides on the course website that introduce Python modules that
are popular among CMU students

https://wiki.python.org/moin/UsefulModules
https://pypi.org/

It is usually possible to install modules manually, but this process can
be a major pain. Luckily, Python also gives us a streamlined approach
for installing modules — the pip module! This feature can locate
modules that are indexed in the Python Package Index (a list of
commonly-used modules), download them, and attempt to install

them.

Traditionally, programmers run pip from the terminal. This is a
command interface that lets you make changes directly to your
computer. But in this class, we'll just run pip in Pyzo.

To run pip in Pyzo, use this command in the interpreter

pip install module-name

This will identify the module and your version of Python and start the
download and installation process. It may run into a dependency error if the
module needs a second module to already be installed —in general, installing
that module and then running pip again will fix the problem.

Note: you will not be able to run pip on CMU cluster machines, as these
have restricted permissions. You may need to log into your main account on
personal machines to run it.

Once you've successfully installed a module, you should be able to put

import module-name

at the top of a Python file, and it will load the module the same way it would
load a built-in library.

Note: this may fail if you have multiple versions of Python installed on your
machine and you install in the terminal. Make sure to use the pip associated
with the version of Python you're using in your editor. You can check your
editor's version in Pyzo with Shell > Edit Shell Configurations (check the value
in exe), then call pip using

pythonversion-number -m pip install module-name

32

Documentation

Once a new module is installed, you're still left with a major question:
how do you use it?

This varies by module, but the best answer is to read the
documentation. Most external modules have official documentation or
APls that describe which functions exist and how to use the module.

For example: how can we run a T-test on two datasets using scipy?

Searching "python scipy t-test"
gets us this link from scipy's
official documentation.

The page describes what the
function does. It also outlines the
required arguments and what it
returns.

It's common for functions to also
have optional keyword
parameters, like tkinter's 111
parameter; we can choose to
Include these or leave them to
the default value.

scipy.stats.ttest_ind

scipy.stats.ttest_ind(a, b, axis=0, equal_var=True, nan_policy="propagate’, alternative="two-sided') [source]

Calculate the T-test for the means of two independent samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values. This test assumes that the populations have identical variances by default.

Parameters: a, b : array_like
The arrays must have the same shape, except in the dimension corresponding to axis (the
first, by default).
axis : int or None, optional

Axis along which to compute test. If None, compute over the whole arrays, a, and b.

equal_var : bool, optional

If True (default), perform a standard independent 2 sample test that assumes equal
population variances [1]. If False, perform Welch's t-test, which does not assume equal
population variance [2].

New in version 0.71.0.

Returns: statistic : float or array

The calculated t-statistic.

pvalue : float or array
The two-tailed p-value.

35

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

Really good documentation may also
contain examples showing how to use
the function!

If you want to learn how to use a
function, try copying the example code
into your editor and running it. Then try
changing some things to see how the
results are affected.

If you find that you're completely lost,
it's likely that the module organizes
things differently from what we've
learned in class. Search the
documentation site for a Getting Started
/ Introduction page to learn the basics.

Examples

>>»> from scipy import stats
>>> np.random.seed(12345678)

Test with sample with identical means:

>»> rvsl = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=560)
>»> stats.ttest_ind(rvsil,rvs2)
(©.26833823296239279, ©.78849443369564776)

>»> stats.ttest_ind(rvsil,rvs2, equal_var = False)
(©.26833823296239279, ©.78849452749500748)

ttest_ind underestimates p for unequal variances:

>»> rvs3 = stats.norm.rvs(loc=5, scale=20, size=5600)
>>> stats.ttest_ind(rvsl, rvs3)
(-0.46580283298287162, ©.64145827413436174)

>»> stats.ttest_ind(rvsl, rvs3, equal_var = False)
(-9.46580283298287162, 0.64149646246569292)

When n1 I= n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

»>>> rvs4 = stats.norm.rvs(loc=5, scale=28, size=100)
>»> stats.ttest ind(rvsl, rvs4)
(-0.99882539442782481, ©.31828327091083896)

>>>

>>>

>2>>

>>>

36

It can also be helpful to search online for other

projects that have used the same module, to find t k fl
examples of how to set it up. Many people have S aC Over ow
written helpful tutorials for this exact purpose.

Two standard resources for finding help are
StackOverflow, a site where people can ask questions
about code and get answers from other developers,
and GitHub, a site where people post open-source
projects for others to use and contribute to.

IMPORTANT: whenever you copy code from online,

make sure to cite it the same way you would cite a Py

paragraph of text in an essay. You can do this by GItH“b
putting a comment above the copied code that

includes a link to the URL you got the code from.

37

https://stackoverflow.com/
https://github.com/

Usg the input command and try/except structures to handle direct user input in
code

Implement and use helper functions in code to break up large problems into
solvable subtasks

Install external modules with the pip command

Read documentation to learn how to use a new module

Feedback: http://bit.ly/110-s21-feedback

http://bit.ly/110-s21-feedback

