
Data Representation
15-110 – Friday 02/05

Announcements

• Check1 due next Monday noon EST

• Don't forget about Piazza and Office Hours!

2

Recap: Variables

We can save data in Python in variables and use them in future
computations.

We can update the value in a variable later in the code, unlike in math.

day = 5

print("There are", 28 - day, "days left in the month")

day = day + 1

print("Now you're on day", day)

3

Activity: Trace the Variable Values

Trace through the following lines of code. What values do a and b hold
at the end?

a = 4

b = a - 2

a = a + 1

b = 7

4

Learning Objectives

• Understand how different number systems can represent the same
information

• Translate binary numbers to decimal, and vice versa

• Interpret binary numbers as abstracted types, including colors and
text

5

Number Systems

6

Computers Run on 0s and 1s

Computers represent everything
by using 0s and 1s. You've likely
seen references to this before.

How can we represent text, or
images, or sound with 0s and 1s?
This brings us back to abstraction.

7

Abstraction is About Representation

Recall our definition of abstraction from the first lecture:

Abstraction is a technique used to make complex systems manageable
by changing the amount of detail used to represent or interact with
the system.

We'll use abstraction to translate 0s and 1s to decimal numbers, then
translate those numbers to other types.

8

Number Systems – Coins

A number system is a way of
representing numbers using
symbols.

One example of a number system
is US currency. How much is each
of the following symbols worth?

Penny
1 cent

Nickel
5 cents

Dime
10 cents

Quarter
25 cents

9

Number Systems – Dollars

Alternatively, we can represent money using dollars and cents, in
decimal form.

For example, a medium coffee at Tazza is $2.65.

10

Converting Coins to Dollars

We can convert between number
systems by translating a value
from one system to the other.

For example, the coins on the left
represent the same value as $0.87

Using pictures is clunky. Let's
make a new representation
system for coins.

11

Coin Number Representation

To represent coins, we'll make a number
with four digits.

The first represents quarters, the second
dimes, the third nickels, and the fourth
pennies.

c.3.1.0.2 =

3*$0.25 + 1*$0.10 + 0*$0.05 + 2*$0.01 =

$0.87

Q D N P

c 3 1 0 2

12

Converting Dollars to Coins

In recitation, you created an algorithm to convert money from dollars
to coins, minimizing the number of coins used.

How did your algorithm work?

13

Conversion Example

What is $0.59 in coin representation?

$0.59 = 2*$0.25 + 0*$0.10 + 1*$0.05 + 4*$0.01 = c.2.0.1.4

14

Activity: Coin Conversion

Now try the following calculations with your discussion group:

What is c.1.1.1.2 in dollars?

What is $0.61 in coin representation?

15

Number Systems – Binary

Now let's go back to computers. We can represent numbers using only 0s
and 1s with the binary number system.

Instead of counting the number of 1s, 5s, 10s, and 25s in coins you need,
count the number of 1s, 2s, 4s, and 8s.

Why these numbers? They're powers of 2. This is a number in base 2, which
only needs the digits 0 and 1. In contrast, our usual decimal system uses base
10 (with digits 0-9).

8 4 2 1

1 1 0 1
16

20212223

Bits and Bytes

When working with binary and computers, we often refer to a set of
binary values used together to represent a number.

A single binary value is called a bit.

A set of 8 bits is called a byte.

We commonly use some number of bytes to represent data values.

17

Counting in Binary

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1

128 64 32 16 8 4 2 1

0 0 0 0 0 0 1 0

128 64 32 16 8 4 2 1

0 0 0 0 0 0 1 1

128 64 32 16 8 4 2 1

0 0 0 0 0 1 0 0

128 64 32 16 8 4 2 1

0 0 0 0 0 1 0 1

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 0

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 1

0 = 1 =

2 = 3 =

4 = 5 =

6 = 7 =
18

Converting Binary to Decimal

To convert a binary number to decimal, just add each power of 2 that is
represented by a 1.

For example, 00011000 = 16 + 8 = 24

Another example:

10010001 = 128 + 16 + 1 = 145

128 64 32 16 8 4 2 1

0 0 0 1 1 0 0 0

128 64 32 16 8 4 2 1

1 0 0 1 0 0 0 1

19

Converting Decimal to Binary

Converting decimal to binary uses the same process as converting dollars to
coins.

Look for the largest power of 2 that can fit in the number and subtract it
from the number. Repeat with the next power of 2, etc., until you reach 0.

For example, 36 = 32 + 4 = 00100100

Another example:

103 = 64 + 32 + 4 + 2 + 1

128 64 32 16 8 4 2 1

0 0 1 0 0 1 0 0

128 64 32 16 8 4 2 1

0 1 1 0 0 1 1 1

20

Activity: Converting Binary

Now try converting numbers on your own.

First: what is 01011011 in decimal?

Second: what is 75 in binary?

21

Abstracted Types

22

Binary and Abstraction

Now that we can represent numbers using binary, we can represent
everything computers store using binary.

We just need to use abstraction to interpret bits or numbers in
particular ways.

Let's consider numbers, images, and text.

23

Discussion: Representing Negative Numbers

It can be helpful to think logically about how to represent a value
before learning how it's done in practice. Let's do that now.

Discuss: We can convert binary directly into positive numbers, but how
do we represent negative numbers?

24

Answer: Representing Negative Numbers

Simple Approach: reserve one bit to represent whether the number is positive or
negative. Convert the rest normally.

Actual Approach: mathematically, X + (-X) = 0. Set up the binary so that when it is added to
the binary of the positive version of the number, the result is 0. Do this by restricting the
number of bits that will be considered to a preset amount (perhaps 8).

The value 11111111 is 255, but it is also -1 because 11111111 + 1 = 100000000, which
becomes 00000000 if we only have 8 bits. 11111110 is -2 (or 254), and so on.

How do we decide whether 11111111 is 255 or -1? It all depends on our interpretation. Is
the integer signed (possibly negative) or unsigned (definitely positive)?

25

Size of Integers

Your machine is either classified as 32-bit or 64-bit. This refers to the
size of integers used by your computer's operating system.

The largest signed integer that can be represented with N bits is 2N-1
(why?). This means that...

Largest int for 32 bits: 4,294,967,295 (or 2,147,483,647 with negative numbers)

Largest int for 64 bits: 18,446,744,073,709,551,615 (18.4 quintillion)

26

Integer Overflow

Why does this matter?

By late 2014, the music video
Gangnam Style received more than
2 billion views. When it passed the
largest positive number that could
be represented with 32 bits,
YouTube showed the number of
views as negative instead!

Now YouTube uses a 64-bit counter
instead.

27

Represent Images as Grids of Colors

What if we want to represent an
image? How can we convert that to
numbers?

First, break the image down into a
grid of colors, where each square of
color has a distinct hue. A square of
color in this context is called a pixel.

If we can represent a pixel in binary,
we can interpret a series of pixels as
an image.

28

Representing Colors in Binary

We need to represent a single color (a pixel) as a
number.

There are a few ways to do this, but we'll focus on
RGB. Any color can be represented as a combination
of Red, Green, and Blue.

Red, green, and blue intensity can be represented
using one byte each, where 00000000 (0) is none and
11111111 (255) is very intense. Each pixel will
therefore require 3 bytes to encode.

Try it out here: w3schools.com/colors/colors_rgb.asp
29

http://www.w3schools.com/colors/colors_rgb.asp

Example: Representing Beige

To make the campus-building beige, we'd need:

Red = 249 = 11111001

Green= 228 = 11100100

Blue = 183 = 10110111

Which makes beige!

30

Represent Text as Individual Characters

Next, how do we represent text?

First, we break it down into smaller parts, like with images. In this case,
we can break text down into individual characters.

For example, the text "Hello World" becomes

H, e, l, l, o, space, W, o, r, l, d

31

Use a Lookup Table to Convert Characters

Unlike colors, characters don't have a natural connection to numbers.

Instead, we can use a lookup table that maps each possible character
to an integer.

As long as every computer uses the same lookup table, computers can
always translate a set of numbers into the same set of characters.

32

ASCII is a Simple Lookup Table

For basic characters, we
can use the encoding
system called ASCII. This
maps the numbers 0 to
255 to characters.
Therefore, one character
is represented by one
byte.

Check it out here:
www.asciitable.com

33

http://www.asciitable.com/

Translating Text to Numbers
"Hello World" =
01001000
01100101
01101100
01101100
01101111
00100000
01010111
01101111
01110010
01101100
01100100

34

Activity: Binary to Text
You do: translate
the following
binary into ASCII
text. We've already
translated binary
to decimal for you.

01011001 = 89

01100001 = 97

01111001 = 121

35

For More Characters, Use Unicode

There are plenty of characters that aren't available in ASCII (characters from
non-English languages, advanced symbols, emoji...) due to the limited size.

The Unicode system represents every character that can be typed into a
computer. It uses up to 5 bytes, which can represent up to 1 trillion
characters! Find all the Unicode characters here: www.unicode-table.com

The Unicode system is also actively under development. The Unicode
Consortium regularly updates the standard to add new types of characters
and emoji.

Discuss: what are the potential repercussions of using a single standard for
all text on computers?

36

http://www.unicode-table.com/

Computer Memory is Stored as Binary

Your computer keeps track of saved data and all the information it
needs to run in its memory, which is represented as binary. You can
think about your computer's memory as a really long list of bits, where
each bit can be set to 0 or 1. But usually we think in terms of bytes,
groups of 8 bits.

Every byte in your computer has an address, which the computer uses
to look up its value.

49 53 49 49 48 75 101 108 198 121 77 97 114 103 97 114 101 116

1000

37

... ...Addresses 1004 1008 1012 1016

Binary Values Depend on Interpretation

When you open a file on your computer, the application goes to the
appropriate address, reads the associated binary, and interprets the binary
values based on the file encoding it expects. That interpretation depends on
the application you use when opening the file, and the filetype.

You can attempt to open any file using any program, if you convince your
computer to let you try. Some programs may crash, and others will show
nonsense because the binary isn't being interpreted correctly.

Example: try changing a .docx filetype to .txt, then open it in a plain text
editor. .docx files have extra encoding, whereas .txt files use plain ASCII.

38

We Use Lots of Bytes!

In modern computing, we use a lot of bytes to represent information.

Smartphone Memory: 64 gigabytes = 64 billion bytes

Google databases: Over 100 million gigabytes = 100 quadrillion bytes!

CMU Wifi: 15 million bytes per second

39

Learning Objectives

• Understand how different number systems can represent the same
information

• Translate binary numbers to decimal, and vice versa

• Interpret binary numbers as abstracted types, including colors and text

• Feedback form: http://bit.ly/110-s21-feedback

40

http://bit.ly/110-s21-feedback

