Programming Basics

15-110 — Wednesday 02/03

* Ex1-1 went okay — 70% completed
e Since there's some confusion, I'll accept submissions up until Friday as on-time

* Exercises are generally due by 3pm before the next lecture. Can also submit before
revision deadline for 9/10 points.

* First recitation tomorrow!
* You received an email yesterday assigning you to your recitation

 All classes are virtual for first two weeks by CMU decree. Check the Zoom
spreadsheet for a link to your section

* Demo: how to open/edit written assignments

* Recognize and use the basic data types in programs

* Interpret and react to basic error messages caused by programs

e Use variables in code and trace the different values they hold

Python and Pyzo

Computers only know how to do what we tell them to do. Programs
communicate with a computer and tell it what to do.

Algorithms can be expressed as programs in many different
programming languages. Different languages use different syntax
(wording) and commands, but they all share the same set of
algorithmic concepts.

In this class, we'll use Python, a popular programming language.

The Python programming language is designed to be easy to read and
simple to implement algorithms in.

There are also a huge number of libraries that implement useful things

in Python. We'll use libraries that support graphics, data analysis,
randomness, and more.

Python's main weakness is efficiency - it can be slower than other
languages. But that won't matter for our purposes.

When writing programs, we use IDEs — Integrated Development
Environments. These are like text editors for programs.

In this class, we recommend that you use the Pyzo IDE. It is fairly
lightweight, which makes it good for novices.

We will mostly use two parts of the Pyzo IDE while writing code- the
editor and the interpreter.

editor interpreter

The editor is just a normal text editor. , \

When We S.a\-/e te.Xt-l It IS Saved to a e py B2 tmp.py (C:\Users\river\Do@nloads\tmp.py) - Interactive Editor for Python -] x

file, but this is still just normal text. I N \

x =1 Kernel process §erminated
y = 2 for restart. (0)
H rint()

The interpreter does the actual work of printix +y oython 3.7.0 (v3.7.0: 1679

converting our Python text into _ 5093, Jun 27 2018, 04:59:

instructions the computer can run. This >1) on Windows (64 bits).

. . This is the Pyzo interpret
happens when you click Run File as er.

Script from the Run menu. Type 'help' for help, type
'?' for a list of *magic*
commands.

Rgnning script: "C:\Users\

We can also run single lines of code in riveriDownloads\tmp. py

the interpreter directly. We'll start by

doing that. In general, use the »>>

interpreter to run short tasks, and the
editor for long tasks.

Your computer uses file and folders to organize data content locally (on the
hardware). You can view your files and folders with Finder (Mac) or File Explorer
(Windows).

A féle is a single piece of content — a document, or a picture, or a song, or Python
code.

A folder is a structure that holds files and/or other folders. Folders can be nested
for further organization. Folders let you manage files directly.

You'll create many files (mostly .pdf and .py files) for this class. We recommend that
you make a 15-110 folder to hold all your work, to keep things organized.

Data Types

Most programs we write will keep track of some kind of information
and change it with actions. We call that information data.

Data have different types depending on their properties. We'll start by
going over three core types: numbers, text, and truth values.

Integers (0, 14, -7) are whole numbers.
Floating point numbers (3.0, 5.735, 8e10) include a decimal point.

+ : addition
- : subtraction
' rr?u.lt.lpllcatlon () : use parentheses to specify the
/ : division ,
order to evaluate operations

** power (2**3 = 8)

An expression like 4**2 or (5-2)/3 is a piece of code that evaluates
to a data value.

Text values in Python are called strings, for reasons we'll go over later.
Text is recognized by Python when it is put inside of quotes, either
single quotes ('Hello ") or double quotes ("Hello").

Strings can be concatenated together using addition.

E.g, "Hello" + "World" produces "HelloWorld".

13

Finally, Python can evaluate whether certain expressions are true or false. These
types of values are called Booleans after the mathematician George Boole.

Booleans can be either True or False (no quotes, and capitals are required). These
names are built into Python directly.

To get a Boolean, we can write True or False directly, or do a comparison. The
basic comparison operators are familiar: <, >, <=, and >=.

We can also check if two values are equal (==), or not equal (! =).
E.g., "Hello" == "World" evaluatesto False

14

Be careful when mixing types in Python, as that can cause error messages. An error
message is how the computer tells you it doesn't understand a command you wrote.

For example, "Hello"” + 5resultsina TypeError.

Traceback (most recent call last):
File "<console>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Similarly, "Hello" < Trueresultsina TypeError.

On the other hand, integers and floating point numbers can be mixed. When this happens,
the result is usually a floating point number.

For example, 8 * 2.0 resultsin 16.0

15

When reading error messages, note that Python uses shortened names
for the four types we've covered.

Integers are called int

Floating point numbers are called f1oat
Strings are called str

Booleans are called bool

Let's do a Kahoot to see if you can identify data types correctly!

Join by going to kahoot.it, then enter the game's pin.

https://kahoot.it/

Writing Code in Files

What if we want to run more than one line of code at a time? We'll need to
use the editor.

Write lines of code in the editor, save the file, then click Run File as Script.

Pyzo will interpret the entire text file into Python code the computer will
understand. It will then run line-by-line through the entire program
sequentially. This is different from the interpreter, which ran each line
individually (though with the context of the previous lines).

Code run from a file doesn't show the evaluated result of every line (unlike
code run from the interpreter). If we want to display a result, we need to use
the command print.

print takes an input expression between parentheses, evaluates the
expression, and displays the evaluated result in the interpreter.

For example:
print(4 - 2) displays 2 in the interpreter.
print("15-110") displays 15-110; note that the quotes aren't included.

5 > 3 does not display True when run from the editor; it displays nothing,
and the result is thrown away.

If you want to display multiple values in the interpreter on the same line, you have
two choices.

First, if you're printing strings, you can concatenate them together.
print("Result: " + "2")

Alternatively, you can use commas to separate the values. print will then separate
the printed values with spaces automatically. This is helpful for printing mixed types.

print("Result:", 2)

21

When writing a program with multiple lines, you might want to leave notes to yourself outside of
the program commands. Use comments to do this.

Any text that follows a # on a line will be ignored by the computer:
print("Hello World")

To comment out a block of code, put or at the beginning and end:

You can also select a block of code and click Comment/Uncomment in Pyzo to toggle comments.

Error Messages

Computers aren't very clever. If you change the syntax of code even a
little bit, the computer might not understand what you mean and will
raise an error.

Print("Hello World")
print "Hello World"

When you get an error message, read it carefully. Error messages
contain useful information that will help you fix your code.

24

"~ | example.py

1. Look for the line number. This line tells you print(Hello World)
. Print("Hello World")
approximately where the error occurred.

2. Look at the error type Running script: "C:\Users\river\Downloads\example.py"
File "C:\Users\river\Downloads\example.py", line 1
i inh print(Hello World) ..
3. If it says SyntaxError, look for the inline o 4 inline arrow
arrow. The pOSlthn gIves you more SyntaxError: invalid syntax
information about the location of the - .
problem (though it isn't always right). line number
4. If it says something else, read the error | example.py
message. The error type and its message print("Hello World")
. . . Print("Hello World")
gives you information about what went
wrong. Running script: "C:\Users\river\Downloads\example.py"
Hello World
Traceback (most recent call last):
File "C:\Users\river\Downloads\example.py", line 2, in
. <module>
We'll talk more about the debugging process Print("Hello World")

NameError: name 'Print' is not defined

in future lectures.

25

error type T

You Do: Debug the Code

Let's practice debugging! Given the following code and error message,
determine A) what the problem is, and B) how to fix it.

I ~ example.py I
1 print("You're in " + 15-110)

Running script: "C:\Users\river\Downloads\example.py"
Traceback (most recent call last):
File "C:\Users\river\Downloads\example.py", line 1, in
<module>
print("You're in " + 15-110)
TypeError: can only concatenate str (not "int") to str

>>> |

26

Be careful when using whitespace (spaces, tabs, and the return key) —it can
sometimes count as syntax too!

In general, whitespace at the beginning of a line has meaninl%; we'll discuss what it
means more in a few weeks. Whitespace in the middle of tokens causes errors.

Whitespace between tokens is okay.

print("Hello World")
print ("Hello World")
print ("Hello World")

To save yourself trouble later: in Pyzo, go to File > Indentation, and select Use
Spaces now.

27

Variables

Our last core building block is the variable. Variables let us save data so we can reuse it in
future computations.

A variable is a name that we define in the program (without quotes), like x or result. We
define a variable with an equal sign:

variable = expression

Note that the variable can only go on the left side of this code, and its value (or an
expression that evaluates to a value) goes on the right. For example:

myPet = "Stella"
result =5 + 2
42 = foo

29

Variable names can use any combination of uppercase letters,
lowercase letters, digits, and underscores. They must start with a letter
or . Starting with a lowercase letter is recommended.

Variable names are case sensitive. For example, Banana is not the
same as banana.

Mistyping a variable name is a common cause of NameErrors.

Unlike everything else we've seen so far, a variable assignment is a
statement, not an expression.

Recall that an expression is a piece of Python code that evaluates to a
single data value. Data, operations, and the print command are all
expressions. Variables are too!

A statement is an action taken by the program. It does not evaluate to
a value; instead, it executes a change, then moves on to the next line.

Variable assighments are statements.

Using and Updating Variables

Once we've defined a variable, we can use it in later expressions. Unlike
in math, we can also change the variable to a new value, if needed.

X =5

y = X - 2 # x evaluates to 5

X =X -1# x is 5 on the right, then changes to 4
print("x:", x) # x: 4

32

Python is Sequential

Note that Python runs every line in order and doesn't peek ahead. If
you want to use a variable, you must define it before it is used.

print(foo) # this causes an error!
foo = 42

foo = 42
print(foo) # this is fine!

33

Activity: Trace the Variable Values

Trace through the following lines of code. What values do a and b hold
at the end?

a =4
b =2a - 2
a =a+1
b =7

34

* Recognize and use the basic data types in programs

* Interpret and react to basic error messages caused by programs

e Use variables in code and trace the different values they hold

* Feedback form: https://bit.ly/110-feedback

35

https://bit.ly/110-feedback

